elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

The Impact of Viscous Effects on the Aerodynamic Damping of Vibrating Transonic Compressor Blades

Grüber, B. und Carstens, V. (2000) The Impact of Viscous Effects on the Aerodynamic Damping of Vibrating Transonic Compressor Blades. 45th International Gas Turbine and Aeroengine Congress and Exhibition, Munich, Germany, May 8-11 2000.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

A parametric study which investigates the influence of viscous effects on the damping behavior of vibrating compressor cascades is presented here. To demonstrate the dependence of unsteady aerodynamic forces on the flow viscosity, a computational study was performed for a transonic compressor cascade of which the blades underwent tuned pitching oscillations while the flow conditions extended from fully subsonic to highly transonic flow. Additionally, the reduced frequency and Reynolds number were varied. In order to check the linear behavior of the aerodynamic forces, all calculations were carried out for three different oscillation amplitudes. Comparisons with inviscid Euler results helped identify the influence of viscous effects. The computations were performed with a Navier-Stokes code, the basic features of which are the use of an AUSM upwind scheme, an implicit time integration, and the implementation of the Baldwin-Lomax turbulence model. In order to demonstrate the possibility of this code to correctly predict the unsteady behavior of strong shock-boundary layer interactions, the experiment of Yamamoto and Tanida on a self-induced shock oscillation due to shock-boundary layer interaction was calculated. A significant improvement in the prediction of the shock amplitude was achieved by a slight modification of the Baldwin Lomax turbulence model. An important result of the presented compressor cascade investigations is that viscous effects may cause a significant change in the aerodynamic damping. This behavior is demonstrated by two cases in which an Euler calculation predicts a damped oscillation whereas a Navier-Stokes computation leads to an excited vibration. It was found that the reason for these contrary results are shock-boundary-layer interactions which dramatically change the aerodynamic damping.

elib-URL des Eintrags:https://elib.dlr.de/14412/
Dokumentart:Konferenzbeitrag (Paper)
Zusätzliche Informationen: LIDO-Berichtsjahr=2003, monograph_id=2000-GT-383,
Titel:The Impact of Viscous Effects on the Aerodynamic Damping of Vibrating Transonic Compressor Blades
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Grüber, B.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Carstens, V.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2000
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
ASME, NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Name der Reihe:ASME Paper
Status:veröffentlicht
Stichwörter:Aeroelasticity of Turbomachines, Unsteady Aerodynamics, Oscillating Cascades, Navier-Stokes Method
Veranstaltungstitel:45th International Gas Turbine and Aeroengine Congress and Exhibition, Munich, Germany, May 8-11 2000
Veranstalter :International Gas Turbine Institute
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Luftfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L TT - Triebwerkstechnologien
DLR - Teilgebiet (Projekt, Vorhaben):NICHT SPEZIFIZIERT
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik
Hinterlegt von: Erdmann, Daniela
Hinterlegt am:16 Sep 2005
Letzte Änderung:14 Jan 2010 21:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.