elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Solar photovoltaic module detection using laboratory and airborne imaging spectroscopy data

Ji, Chaonan and Bachmann, Martin and Esch, Thomas and Feilhauer, Hannes and Heiden, Uta and Heldens, Wieke and Hueni, Andreas and Lakes, Tobia and Metz-Marconcini, Annekatrin and Schroedter-Homscheidt, Marion and Weyand, Susanne and Zeidler, Julian (2021) Solar photovoltaic module detection using laboratory and airborne imaging spectroscopy data. Remote Sensing of Environment, 266, pp. 1-13. Elsevier. doi: 10.1016/j.rse.2021.112692. ISSN 0034-4257.

[img] PDF - Published version
10MB

Official URL: https://www.sciencedirect.com/science/article/pii/S0034425721004120

Abstract

Over the past decades, solar panels have been widely used to harvest solar energy owing to the decreased cost of silicon-based photovoltaic (PV) modules, and therefore it is essential to remotely map and monitor the presence of solar PV modules. Many studies have explored on PV module detection based on color aerial photography and manual photo interpretation. Imaging spectroscopy data are capable of providing detailed spectral information to identify the spectral features of PV, and thus potentially become a promising resource for automated and operational PV detection. However, PV detection with imaging spectroscopy data must cope with the vast spectral diversity of surface materials, which is commonly divided into spectral intra-class variability and inter-class similarity. We have developed an approach to detect PV modules based on their physical absorption and reflection characteristics using airborne imaging spectroscopy data. A large database was implemented for training and validating the approach, including spectra-goniometric measurements of PV modules and other materials, a HyMap image spectral library containing 31 materials with 5627 spectra, and HySpex imaging spectroscopy data sets covering Oldenburg, Germany. By normalizing the widely used Hydrocarbon Index (HI), we solved the intra-class variability caused by different detection angles, and validated it against the spectra-goniometric measurements. Knowing that PV modules are composed of materials with different transparencies, we used a group of spectral indices and investigated their interdependencies for PV detection with implementing the image spectral library. Finally, six well-trained spectral indices were applied to HySpex data acquired in Oldenburg, Germany, yielding an overall PV map. Four subsets were selected for validation and achieved overall accuracies, producer's accuracies and user's accuracies, respectively. This physics-based approach was validated against a large database collected from multiple platforms (laboratory measurements, airborne imaging spectroscopy data), thus providing a robust, transferable and applicable way to detect PV modules using imaging spectroscopy data. We aim to create greater awareness of the potential importance and applicability of airborne and spaceborne imaging spectroscopy data for PV modules identification.

Item URL in elib:https://elib.dlr.de/144010/
Document Type:Article
Title:Solar photovoltaic module detection using laboratory and airborne imaging spectroscopy data
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Ji, ChaonanUNSPECIFIEDhttps://orcid.org/0000-0001-8154-0508UNSPECIFIED
Bachmann, MartinUNSPECIFIEDhttps://orcid.org/0000-0001-8381-7662UNSPECIFIED
Esch, ThomasUNSPECIFIEDhttps://orcid.org/0000-0002-5868-9045UNSPECIFIED
Feilhauer, HannesUNSPECIFIEDhttps://orcid.org/0000-0001-5758-6303UNSPECIFIED
Heiden, UtaUNSPECIFIEDhttps://orcid.org/0000-0002-3865-1912UNSPECIFIED
Heldens, WiekeUNSPECIFIEDhttps://orcid.org/0000-0001-6209-5664UNSPECIFIED
Hueni, AndreasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lakes, TobiaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Metz-Marconcini, AnnekatrinUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schroedter-Homscheidt, MarionUNSPECIFIEDhttps://orcid.org/0000-0002-1854-903XUNSPECIFIED
Weyand, SusanneUNSPECIFIEDhttps://orcid.org/0000-0001-6986-0533UNSPECIFIED
Zeidler, JulianUNSPECIFIEDhttps://orcid.org/0000-0001-9444-2296UNSPECIFIED
Date:December 2021
Journal or Publication Title:Remote Sensing of Environment
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:266
DOI:10.1016/j.rse.2021.112692
Page Range:pp. 1-13
Publisher:Elsevier
ISSN:0034-4257
Status:Published
Keywords:Mapping, Hydrocarbon spectral index, Urban environment, Renewable energy, Hyperspectral remote sensing HySpex
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Optical remote sensing
Location: Oberpfaffenhofen
Institutes and Institutions:German Remote Sensing Data Center > Land Surface Dynamics
Remote Sensing Technology Institute > Photogrammetry and Image Analysis
Institute of Networked Energy Systems > Energy Systems Analysis, OL
Deposited By: Heiden, Dr.rer.nat. Uta
Deposited On:21 Sep 2021 12:48
Last Modified:29 Mar 2023 00:00

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.