elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Data-Driven Approach to Partitioning Net Ecosystem Exchange Using a Deep State Space Model

Trifunov, Violeta Teodora und Shadaydeh, Maha und Runge, Jakob und Reichstein, Markus und Denzler, Joachim (2021) A Data-Driven Approach to Partitioning Net Ecosystem Exchange Using a Deep State Space Model. IEEE Access, 9. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/ACCESS.2021.3101129. ISSN 2169-3536.

Dies ist die aktuellste Version dieses Eintrags.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
6MB

Offizielle URL: https://ieeexplore.ieee.org/document/9500232

Kurzfassung

Describing ecosystem carbon fluxes is essential for deepening the understanding of the Earth system. However, partitioning net ecosystem exchange (NEE), i.e. the sum of ecosystem respiration (R eco ) and gross primary production (GPP), into these summands is ill-posed since there can be infinitely many mathematically-valid solutions. We propose a novel data-driven approach to NEE partitioning using a deep state space model which combines the interpretability and uncertainty analysis of state space models with the ability of recurrent neural networks to learn the complex functions governing the data. We validate our proposed approach on the FLUXNET dataset. We suggest using both the past and the future of R eco ’s predictors for training along with the nighttime NEE (NEE night ) to learn a dynamical model of R eco . We evaluate our nighttime R eco forecasts by comparing them to the ground truth NEE night and obtain the best accuracy with respect to other partitioning methods. The learned nighttime R eco model is then used to forecast the daytime R eco conditioning on the future observations of different predictors, i.e., global radiation, air temperature, precipitation, vapor pressure deficit, and daytime NEE (NEE day ). Subtracted from the NEE day , these estimates yield the GPP, finalizing the partitioning. Our purely data-driven daytime R eco forecasts are in line with the recent empirical partitioning studies reporting lower daytime R eco than the Reichstein method, which can be attributed to the Kok effect, i.e., the plant respiration being higher at night. We conclude that our approach is a good alternative for data-driven NEE partitioning and complements other partitioning methods.

elib-URL des Eintrags:https://elib.dlr.de/143989/
Dokumentart:Zeitschriftenbeitrag
Titel:A Data-Driven Approach to Partitioning Net Ecosystem Exchange Using a Deep State Space Model
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Trifunov, Violeta TeodoraFSU JenaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Shadaydeh, MahaFSU Jenahttps://orcid.org/0000-0001-6455-2400NICHT SPEZIFIZIERT
Runge, JakobJakob.Runge (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reichstein, MarkusMax-Planck-Institute for Biogeochemistry, Jena, Germanyhttps://orcid.org/0000-0001-5736-1112NICHT SPEZIFIZIERT
Denzler, JoachimFSU Jenahttps://orcid.org/0000-0002-3193-3300NICHT SPEZIFIZIERT
Datum:18 Juli 2021
Erschienen in:IEEE Access
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:9
DOI:10.1109/ACCESS.2021.3101129
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:2169-3536
Status:veröffentlicht
Stichwörter:Deep state space models, net ecosystem exchange, NEE partitioning, time series forecasting
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften
Hinterlegt von: Tibau Alberdi, Xavier Andoni
Hinterlegt am:18 Okt 2021 08:27
Letzte Änderung:18 Okt 2021 08:27

Verfügbare Versionen dieses Eintrags

  • A Data-Driven Approach to Partitioning Net Ecosystem Exchange Using a Deep State Space Model. (deposited 18 Okt 2021 08:27) [Gegenwärtig angezeigt]

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.