elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

LPCMCI: Causal Discovery in Time Series with Latent Confounders

Gerhardus, Andreas und Runge, Jakob (2021) LPCMCI: Causal Discovery in Time Series with Latent Confounders. EGU General Assembly 2021, 2021-04-19 - 2021-04-30, Online. doi: 10.5194/egusphere-egu21-8259.

[img] PDF
2MB

Offizielle URL: https://meetingorganizer.copernicus.org/EGU21/EGU21-8259.html

Kurzfassung

The quest to understand cause and effect relationships is at the basis of the scientific enterprise. In cases where the classical approach of controlled experimentation is not feasible, methods from the modern framework of causal discovery provide an alternative way to learn about cause and effect from observational, i.e., non-experimental data. Recent years have seen an increasing interest in these methods from various scientific fields, for example in the climate and Earth system sciences (where large scale experimentation is often infeasible) as well as machine learning and artificial intelligence (where models based on an understanding of cause and effect promise to be more robust under changing conditions.) In this contribution we present the novel LPCMCI algorithm for learning the cause and effect relationships in multivariate time series. The algorithm is specifically adapted to several challenges that are prevalent in time series considered in the climate and Earth system sciences, for example strong autocorrelations, combinations of time lagged and contemporaneous causal relationships, as well as nonlinearities. It moreover allows for the existence of latent confounders, i.e., it allows for unobserved common causes. While this complication is faced in most realistic scenarios, especially when investigating a system as complex as Earth's climate system, it is nevertheless assumed away in many existing algorithms. We demonstrate applications of LPCMCI to examples from a climate context and compare its performance to competing methods. Related reference: Gerhardus, Andreas and Runge, Jakob (2020). High-recall causal discovery for autocorrelated time series with latent confounders. In Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020).

elib-URL des Eintrags:https://elib.dlr.de/143955/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:LPCMCI: Causal Discovery in Time Series with Latent Confounders
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gerhardus, AndreasAndreas.Gerhardus (at) dlr.dehttps://orcid.org/0000-0003-1868-655XNICHT SPEZIFIZIERT
Runge, JakobJakob.Runge (at) dlr.dehttps://orcid.org/0000-0002-0629-1772NICHT SPEZIFIZIERT
Datum:April 2021
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5194/egusphere-egu21-8259
Status:veröffentlicht
Stichwörter:causal discovery; time series analysis; causal inference; causality; hidden variables
Veranstaltungstitel:EGU General Assembly 2021
Veranstaltungsort:Online
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:19 April 2021
Veranstaltungsende:30 April 2021
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):R - keine Zuordnung
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften > Datenmanagement und Analyse
Hinterlegt von: Gerhardus, Andreas
Hinterlegt am:18 Okt 2021 08:25
Letzte Änderung:24 Apr 2024 20:43

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.