elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Acoustic Impact on Fan Flutter Characteristics in Short Aero Engine Intakes

Schnell, Rainer und Frey, Christian (2021) Acoustic Impact on Fan Flutter Characteristics in Short Aero Engine Intakes. In: AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021. AIAA AVIATION 2021 FORUM, 2021-08-02 - 2021-08-06, Washington DC / Virtual Event. doi: 10.2514/6.2021-2466. ISBN 978-162410610-1.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

We have investigated pressure waves being emitted by the structural motion of a rotor blade and their impact on flutter sensitivity in a near-transonic, low fan pressure ratio fan. This impact results from an acoustic feedback loop caused by reflection phenomena at the intake lip. It may lead to a specific form of aeroelastic instability due to a closely coupled fan and intake system as typically being present in ultra-high bypass ratio engines with short nacelles. In the present study, a downscaled yet engine representative propulsion system was considered. Non-linear harmonic balance (HB) simulations of the entire fan/intake system over a wide range of operating conditions along different working lines and reduced blade eigen frequencies were carried out. As reported in previous studies, we observed a significant impact on the rotor aerodynamic damping as compared with the isolated rotor analysis due to the presence of the intake. This influence was either stabilizing or destabilizing, depending on the intake reflection characteristics, operating conditions, reduced frequency and the phase relation between the emitted and reflected unsteady pressure field. CFD data was analyzed accordingly taking advantage of 2D wave split as well as 3D in-duct modal decomposition techniques. By deriving a simple analytical model based on eigenvalue analysis, a landscape showing regions of aerodynamic damping and excitation could be drawn over the investigated frequency-mass flow range. This analytical model and its verification with CFD data can help identifying destabilizing areas at an early design stage and hence support design decisions regarding flutter stability or give indications where analysis with higher fidelity is required.

elib-URL des Eintrags:https://elib.dlr.de/143927/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Acoustic Impact on Fan Flutter Characteristics in Short Aero Engine Intakes
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schnell, RainerDLR AT-FVNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Frey, ChristianDLR-KP, AT-NUMhttps://orcid.org/0000-0003-0496-9225NICHT SPEZIFIZIERT
Datum:August 2021
Erschienen in:AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2021-2466
ISBN:978-162410610-1
Status:veröffentlicht
Stichwörter:Fan, Intake Acoustic Coupling, Flutter, Stability, UHBR Engine Integration
Veranstaltungstitel:AIAA AVIATION 2021 FORUM
Veranstaltungsort:Washington DC / Virtual Event
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:2 August 2021
Veranstaltungsende:6 August 2021
Veranstalter :AIAA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Triebwerkskonzepte und -integration
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik
Institut für Antriebstechnik > Fan- und Verdichter
Hinterlegt von: Schnell, Dr.-Ing. Rainer
Hinterlegt am:18 Okt 2021 08:14
Letzte Änderung:24 Apr 2024 20:43

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.