elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Injection locking and synchronization in Josephson photonics devices

Danner, Lukas und Padurariu, Ciprian und Ankerhold, Joachim und Kubala, Björn Heiko (2021) Injection locking and synchronization in Josephson photonics devices. Physical Review B, 104 (5), 054517. American Physical Society. doi: 10.1103/PhysRevB.104.054517. ISSN 2469-9950.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB
[img] PDF - Verlagsversion (veröffentlichte Fassung)
262kB

Offizielle URL: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.054517

Kurzfassung

Injection locking can stabilize a source of radiation, leading to an efficient suppression of noise-induced spectral broadening and therefore, to a narrow spectrum. The technique is well established in laser physics, where a phenomenological description due to Adler is usually sufficient. Recently, locking experiments were performed in Josephson photonics devices, where microwave radiation is created by inelastic Cooper pair tunneling across a dc-biased Josephson junction connected in-series with a microwave resonator. An in-depth theory of locking for such devices, accounting for the Josephson nonlinearity and the specific engineered environments, is lacking. Here, we study injection locking in a typical Josephson photonics device where the environment consists of a single mode cavity, operated in the classical regime. We show that an in-series resistance, however small, is an important ingredient in describing self-sustained Josephson oscillations and enables the locking region. We derive a dynamical equation describing locking, similar to an Adler equation, from the specific circuit equations. The effect of noise on the locked Josephson phase is described in terms of phase slips in a modified washboard potential. For weak noise, the spectral broadening is reduced exponentially with the injection signal. When this signal is provided from a second Josephson device, the two devices synchronize. In the linearized limit, we recover the Kuramoto model of synchronized oscillators. The picture of classical phase slips established here suggests a natural extension towards a theory of locking in the quantum regime.

elib-URL des Eintrags:https://elib.dlr.de/143823/
Dokumentart:Zeitschriftenbeitrag
Titel:Injection locking and synchronization in Josephson photonics devices
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Danner, LukasLukas.Danner (at) dlr.dehttps://orcid.org/0000-0002-2222-2486NICHT SPEZIFIZIERT
Padurariu, Ciprianciprian.padurariu (at) uni-ulm.dehttps://orcid.org/0000-0001-9568-2080NICHT SPEZIFIZIERT
Ankerhold, Joachimjoachim.ankerhold (at) uni-ulm.dehttps://orcid.org/0000-0002-6510-659XNICHT SPEZIFIZIERT
Kubala, Björn HeikoBjoern.Kubala (at) dlr.dehttps://orcid.org/0000-0001-6685-0233NICHT SPEZIFIZIERT
Datum:25 August 2021
Erschienen in:Physical Review B
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:104
DOI:10.1103/PhysRevB.104.054517
Seitenbereich:054517
Verlag:American Physical Society
ISSN:2469-9950
Status:veröffentlicht
Stichwörter:Josephson effect, phase slips, superconducting quantum optics, synchronization, Kuramoto model, Langevin equation, T-symmetry, dynamical systems, Josephson junctions
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Potential von synthetischen Apertur-Quantenradaren
Standort: Ulm
Institute & Einrichtungen:Institut für Quantentechnologien > Theoretische Quantenphysik
Hinterlegt von: Danner, Lukas
Hinterlegt am:27 Dez 2021 12:29
Letzte Änderung:27 Okt 2023 14:13

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.