Kühnl, Marlene and Sapena Moll, Marta and Taubenböck, Hannes (2021) Categorizing Urban Structural Types using an Object-Based Local Climate Zone Classification Scheme in Medellín, Colombia. REAL CORP 2021, 2021-09-07 - 2021-09-11, Vienna, Austria. ISBN ISBN 978-3-9504945-0-1. ISSN ISSN 2521-8050.
PDF
809kB |
Official URL: https://www.corp.at/index.php?id=1
Abstract
Climate change is reshaping societies. As we see more and more people moving to urban areas an ever-increasing number settles in low-cost and more hazardous areas. However, due to the rapid growth and sheer scale of informal settlements, knowledge gaps often exist on location or quantity. In this sense, Earth Observation combined with machine learning techniques allows to generate reliable geo-information. In this study, we classify the morphologically heterogeneous entire urban area of Medellín, Colombia into urban structural types. We do this by the Local Climate Zone (LCZ) scheme. Our specific focus is on one structural type, i.e. informal settlements. We test whether it is feasible by the LCZ concept to localize and quantify these vulnerable areas. The LCZ scheme is generic, replicable, neutral, and has become widespread in urban studies. We use urban blocks to perform a scene-based image classification into nine LCZs. We refer to multi-modal remotely-sensed data: high-resolution multispectral image data and elevation data. We apply an optimized random forest algorithm using shape metrics, as well as spectral and texture features. In general, we find the LCZ classification, measured with an overall accuracy of 82%, shows a reliable representation of urban typologies and functions across the city. Specifically, we compare the urban blocks classified as the LCZ lightweigth low-rise to the informal settlements provided by the city of Medellín. Here we reach an agreement of 86%. Besides, our approach complements the official dataset by including recently developed areas which are not yet considered by the city.
Item URL in elib: | https://elib.dlr.de/143799/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||||||
Title: | Categorizing Urban Structural Types using an Object-Based Local Climate Zone Classification Scheme in Medellín, Colombia | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 8 September 2021 | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||
Page Range: | pp. 173-182 | ||||||||||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||||||||||
ISSN: | ISSN 2521-8050 | ||||||||||||||||||||||||||||||||
ISBN: | ISBN 978-3-9504945-0-1 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Earth Observation, Machine Learning, Informal Settlements, Random Forest, Local Climate Zone | ||||||||||||||||||||||||||||||||
Event Title: | REAL CORP 2021 | ||||||||||||||||||||||||||||||||
Event Location: | Vienna, Austria | ||||||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||||||
Event Start Date: | 7 September 2021 | ||||||||||||||||||||||||||||||||
Event End Date: | 11 September 2021 | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Geoscientific remote sensing and GIS methods, R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||||||
Deposited By: | Sapena Moll, Marta | ||||||||||||||||||||||||||||||||
Deposited On: | 21 Sep 2021 13:05 | ||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:43 |
Repository Staff Only: item control page