Winkelbauer, Dominik und Denninger, Maximilian und Triebel, Rudolph (2021) Learning to Localize in New Environments from Synthetic Training Data. In: 2021 IEEE International Conference on Robotics and Automation, ICRA 2021, Seiten 5840-5846. ICRA 2021, 2021-05-30 - 2021-06-05, Xi'an, China. doi: 10.1109/ICRA48506.2021.9560872. ISBN 978-172819077-8. ISSN 1050-4729.
PDF
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9560872
Kurzfassung
Most existing approaches for visual localization either need a detailed 3D model of the environment or, in the case of learning-based methods, must be retrained for each new scene. This can either be very expensive or simply impossible for large, unknown environments, for example in search-and-rescue scenarios. Although there are learning-based approaches that operate scene-agnostically, the generalization capability of these methods is still outperformed by classical approaches. In this paper, we present an approach that can generalize to new scenes by applying specific changes to the model architecture, including an extended regression part, the use of hierarchical correlation layers, and the exploitation of scale and uncertainty information. Our approach outperforms the 5-point algorithm using SIFT features on equally big images and additionally surpasses all previous learning-based approaches that were trained on different data. It is also superior to most of the approaches that were specifically trained on the respective scenes. We also evaluate our approach in a scenario where only very few reference images are available, showing that under such more realistic conditions our learning-based approach considerably exceeds both existing learning-based and classical methods.
elib-URL des Eintrags: | https://elib.dlr.de/143564/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Learning to Localize in New Environments from Synthetic Training Data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2021 | ||||||||||||||||
Erschienen in: | 2021 IEEE International Conference on Robotics and Automation, ICRA 2021 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/ICRA48506.2021.9560872 | ||||||||||||||||
Seitenbereich: | Seiten 5840-5846 | ||||||||||||||||
ISSN: | 1050-4729 | ||||||||||||||||
ISBN: | 978-172819077-8 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Localization, Robotics, Computer Vision, Machine Learning, Deep Learning | ||||||||||||||||
Veranstaltungstitel: | ICRA 2021 | ||||||||||||||||
Veranstaltungsort: | Xi'an, China | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 30 Mai 2021 | ||||||||||||||||
Veranstaltungsende: | 5 Juni 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||
Hinterlegt von: | Winkelbauer, Dominik | ||||||||||||||||
Hinterlegt am: | 28 Okt 2021 11:02 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags