Hörger, Till and Dresia, Kai and Waxenegger-Wilfing, Günther and Werling, Lukas and Schlechtriem, Stefan (2020) Preliminary Investigation of Robust Reinforcement Learning for Control of an Existing Green Propellant Thruster. AIAA Propulsion and Energy Forum, 09.-11.08. 2020, Denver, online.
![]() |
PDF
- Only accessible within DLR
1MB |
Abstract
Advanced engine control is an important requirement for the efficient operation of future reusable engines, facilitating a safer and more economical engine operation. For this reason, modern control strategies are extensively studied in recent years, mainly through the use of simulation environments. An important development step is to test the performance and robustness of the control algorithm at real test benches. The present paper describes the first steps towards the use of an reinforcement learning based controller on a N2O / C2H6 22 N green propellant thruster. The control objectives are given by regulating the mixture ratio and combustion pressure. The existing test bench is modelled in EcosimPro / ESPSS. Based on the simulation model deep reinforcement learning is used to train the controller and domain randomization is used to increase the robustness. The overall goal is to transfer the controller from the simulation model to the real test bench. Finally, preliminary experiments demonstrate the basic functionality of reinforcement learning based controllers for real rocket propulsion systems.
Item URL in elib: | https://elib.dlr.de/143555/ | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||
Title: | Preliminary Investigation of Robust Reinforcement Learning for Control of an Existing Green Propellant Thruster | ||||||||||||||||||
Authors: |
| ||||||||||||||||||
Date: | August 2020 | ||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||
Open Access: | No | ||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||
Status: | Published | ||||||||||||||||||
Keywords: | Reinforcement Learning, Thruster Control | ||||||||||||||||||
Event Title: | AIAA Propulsion and Energy Forum | ||||||||||||||||||
Event Location: | Denver, online | ||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||
Event Dates: | 09.-11.08. 2020 | ||||||||||||||||||
Organizer: | AIAA | ||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||
HGF - Program Themes: | Space Transportation | ||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||
DLR - Program: | R RP - Space Transportation | ||||||||||||||||||
DLR - Research theme (Project): | R - Agile development of advanced rocket propulsion systems | ||||||||||||||||||
Location: | Lampoldshausen | ||||||||||||||||||
Institutes and Institutions: | Institute of Space Propulsion | ||||||||||||||||||
Deposited By: | Hörger, Till | ||||||||||||||||||
Deposited On: | 23 Aug 2021 10:34 | ||||||||||||||||||
Last Modified: | 23 Aug 2021 10:34 |
Repository Staff Only: item control page