Ruggaber, Julian und Brembeck, Jonathan (2021) A Novel Kalman Filter Design and Analysis Method Considering Observability and Dominance Properties of Measurands Applied to Vehicle State Estimation. Sensors, 21. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s21144750. ISSN 1424-8220.
PDF
- Verlagsversion (veröffentlichte Fassung)
13MB |
Offizielle URL: https://www.mdpi.com/1424-8220/21/14/4750
Kurzfassung
In Kalman filter design, the filter algorithm and prediction model design are the most discussed topics in research. Another fundamental but less investigated issue is the careful selection of measurands and their contribution to the estimation problem. This is often done purely on the basis of empirical values or by experiments. This paper presents a novel holistic method to design and assess Kalman filters in an automated way and to perform their analysis based on quantifiable parameters. The optimal filter parameters are computed with the help of a nonlinear optimization algorithm. To determine and analyze an optimal filter design, two novel quantitative nonlinear observability measures are presented along with a method to quantify the dominance contribution of a measurand to an estimate. As a result, different filter configurations can be specifically investigated and compared with respect to the selection of measurands and their influence on the estimation. An unscented Kalman filter algorithm is used to demonstrate the method’s capabilities to design and analyze the estimation problem parameters. For this purpose, an example of a vehicle state estimation with a focus on the tire-road friction coefficient is used, which represents a challenging problem for classical analysis and filter parameterization.
elib-URL des Eintrags: | https://elib.dlr.de/143206/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | A Novel Kalman Filter Design and Analysis Method Considering Observability and Dominance Properties of Measurands Applied to Vehicle State Estimation | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 12 Juli 2021 | ||||||||||||
Erschienen in: | Sensors | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Ja | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 21 | ||||||||||||
DOI: | 10.3390/s21144750 | ||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||
Name der Reihe: | Special Issue: Advance in Sensors and Sensing Systems for Driving and Transportation: Part B | ||||||||||||
ISSN: | 1424-8220 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Kalman filter; estimator design; nonlinear state estimation; nonlinear observability; tire-road friction coefficient; vehicle dynamics; vehicle state estimation | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Fahrzeug-Systemdynamik | ||||||||||||
Hinterlegt von: | Ruggaber, Julian | ||||||||||||
Hinterlegt am: | 30 Sep 2021 17:56 | ||||||||||||
Letzte Änderung: | 30 Sep 2021 17:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags