Niemeijer, Joshua und Schäfer, P. Jörg (2021) Combining Semantic Self-Supervision and Self-Training for Domain Adaptation in Semantic Segmentation. In: 32nd IEEE Intelligent Vehicles Symposium Workshops, IV Workshops 2021. IV2021: Workshop on Autonomy@Scale, 2021-07-11, Nagoya, Japan. doi: 10.1109/IVWorkshops54471.2021.9669255. ISBN 978-1-6654-7921-9.
PDF
1MB |
Kurzfassung
This work presents a two-staged, unsupervised domain adaptation process for semantic segmentation models by combining a self-training and self-supervision strategy. Self-training (i. e., training a model on self-inferred pseudo-labels) yields competitive results for domain adaptation in recent research. However, self-training depends on high-quality pseudo-labels. On the other hand, self-supervision trains the model on a surrogate task and improves its performance on the target domain without further prerequisites. Therefore, our approach improves the model's performance on the target domain with a novel surrogate task. To that, we continuously determine class centroids of the feature representations in the network’s pre-logit layer on the source domain. Our surrogate task clusters the pre-logit feature representations on the target domain regarding these class centroids during both training stages. After the first stage, the resulting model delivers improved pseudo-labels for the additional self-training in the second stage. We evaluate our method on two different domain adaptions, a real-world domain change from Cityscapes to the Berkeley Deep Drive dataset and a synthetic to real-world domain change from GTA5 to the Cityscapes dataset. For the real-world domain change, the evaluation shows a significant improvement of the model from 46% mIoU to 54% mIoU on the target domain. For the synthetic to real-world domain change, we achieve an improvement from 38.8% to 46.42% on the real-world target domain
elib-URL des Eintrags: | https://elib.dlr.de/143158/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Combining Semantic Self-Supervision and Self-Training for Domain Adaptation in Semantic Segmentation | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juli 2021 | ||||||||||||
Erschienen in: | 32nd IEEE Intelligent Vehicles Symposium Workshops, IV Workshops 2021 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/IVWorkshops54471.2021.9669255 | ||||||||||||
ISBN: | 978-1-6654-7921-9 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Deep-Learning, Unsupervised-Learning; Domain Adaptation; Autonomous Vehicles; Environment Perception; Artificial Intelligence | ||||||||||||
Veranstaltungstitel: | IV2021: Workshop on Autonomy@Scale | ||||||||||||
Veranstaltungsort: | Nagoya, Japan | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsdatum: | 11 Juli 2021 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||||||
Standort: | Braunschweig | ||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik | ||||||||||||
Hinterlegt von: | Niemeijer, Joshua | ||||||||||||
Hinterlegt am: | 26 Jul 2021 16:32 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags