elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Combining Semantic Self-Supervision and Self-Training for Domain Adaptation in Semantic Segmentation

Niemeijer, Joshua und Schäfer, P. Jörg (2021) Combining Semantic Self-Supervision and Self-Training for Domain Adaptation in Semantic Segmentation. In: 32nd IEEE Intelligent Vehicles Symposium Workshops, IV Workshops 2021. IV2021: Workshop on Autonomy@Scale, 2021-07-11, Nagoya, Japan. doi: 10.1109/IVWorkshops54471.2021.9669255. ISBN 978-1-6654-7921-9.

[img] PDF
1MB

Kurzfassung

This work presents a two-staged, unsupervised domain adaptation process for semantic segmentation models by combining a self-training and self-supervision strategy. Self-training (i. e., training a model on self-inferred pseudo-labels) yields competitive results for domain adaptation in recent research. However, self-training depends on high-quality pseudo-labels. On the other hand, self-supervision trains the model on a surrogate task and improves its performance on the target domain without further prerequisites. Therefore, our approach improves the model's performance on the target domain with a novel surrogate task. To that, we continuously determine class centroids of the feature representations in the network’s pre-logit layer on the source domain. Our surrogate task clusters the pre-logit feature representations on the target domain regarding these class centroids during both training stages. After the first stage, the resulting model delivers improved pseudo-labels for the additional self-training in the second stage. We evaluate our method on two different domain adaptions, a real-world domain change from Cityscapes to the Berkeley Deep Drive dataset and a synthetic to real-world domain change from GTA5 to the Cityscapes dataset. For the real-world domain change, the evaluation shows a significant improvement of the model from 46% mIoU to 54% mIoU on the target domain. For the synthetic to real-world domain change, we achieve an improvement from 38.8% to 46.42% on the real-world target domain

elib-URL des Eintrags:https://elib.dlr.de/143158/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Combining Semantic Self-Supervision and Self-Training for Domain Adaptation in Semantic Segmentation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Niemeijer, JoshuaJoshua.Niemeijer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schäfer, P. Jörgjoerg.schaefer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juli 2021
Erschienen in:32nd IEEE Intelligent Vehicles Symposium Workshops, IV Workshops 2021
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/IVWorkshops54471.2021.9669255
ISBN:978-1-6654-7921-9
Status:veröffentlicht
Stichwörter:Deep-Learning, Unsupervised-Learning; Domain Adaptation; Autonomous Vehicles; Environment Perception; Artificial Intelligence
Veranstaltungstitel:IV2021: Workshop on Autonomy@Scale
Veranstaltungsort:Nagoya, Japan
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:11 Juli 2021
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - NGC KoFiF (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik
Hinterlegt von: Niemeijer, Joshua
Hinterlegt am:26 Jul 2021 16:32
Letzte Änderung:24 Apr 2024 20:42

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.