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Abstract— This work presents a two-staged, unsupervised
domain adaptation process for semantic segmentation models
by combining a self-training and self-supervision strategy.
Self-training (i. e., training a model on self-inferred pseudo-
labels) yields competitive results for domain adaptation in
recent research. However, self-training depends on high-quality
pseudo-labels. On the other hand, self-supervision trains the
model on a surrogate task and improves its performance on
the target domain without further prerequisites.

Therefore, our approach improves the model’s performance
on the target domain with a novel surrogate task. To that, we
continuously determine class centroids of the feature represen-
tations in the network’s pre-logit layer on the source domain.
Our surrogate task clusters the pre-logit feature representations
on the target domain regarding these class centroids during
both training stages. After the first stage, the resulting model
delivers improved pseudo-labels for the additional self-training
in the second stage. We evaluate our method on two different
domain adaptions, a real-world domain change from Cityscapes
to the Berkeley Deep Drive dataset and a synthetic to real-world
domain change from GTA5 to the Cityscapes dataset. For the
real-world domain change, the evaluation shows a significant
improvement of the model from 46% mIoU to 54% mIoU
on the target domain. For the synthetic to real-world domain
change, we achieve an improvement from 38.8% to 46.42%
on the real-world target domain.

I. INTRODUCTION

Autonomous vehicles require detailed information about
the environment. In this context, image processing is of
great importance. A semantic image segmentation provides
a pixel-wise classification and hence creates detailed infor-
mation about object and surface classes.

Training a network on a specific data domain (source
domain) yields a model with good accuracy on that same
domain. For example, a model trained on the Cityscapes
dataset [3] performs well on the corresponding test data
because it has the same properties as the training data
regarding the sensor configuration and the perceived environ-
ment. Applying that model to a different data domain (target
domain) with different properties results in a significant drop
in accuracy. Performing this domain adaptation by manually
creating new labels for the target domain and including these
labels in the training process reduces the gap of performance
between the source and the target domain. This approach,
however, is expensive and thus not feasible, especially for
the task of semantic segmentation.
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Fig. 1. The first and second column of images show the results before
and after adaption, respectively. The adaptation process shows benefits on
difficult conditions (e. g., glare, and on different road surfaces) and in the
domain shift day to night. The top row shows the network’s uncertainties,
which is much smaller after the domain adaptation.

Several approaches to reduce the manual work for do-
main adaptation exist: Active learning approaches reduce the
manual labeling overhead by recommending a subset of the
target dataset that promises the most effective training results
[13]. Unsupervised domain adaptation approaches even avoid
manual labeling overhead altogether (cf. Section II).

In general, unsupervised domain adaptation methods aim
to align the data distributions on the source domain and the
target domain [1, 7, 15]. This alignment either happens in
the input space (the images) or the neural network’s feature
space.

This work contributes a new domain adaptation approach
for combining self-supervision and self-training approaches
(cf. Figure 2). In the first stage, our approach aligns the
distributions of the source and target domain in the feature
space via a self-supervision strategy that ties up the clusters
of the feature representations, each of which represents
one class. The resulting model generates pseudo-labels with



Fig. 2. Our two-staged training process.

improved quality on the target domain data. Additionally to
the feature clustering and training on the source domain, the
second stage trains the model on the target domain with the
newly generated pseudo-labels.

Our evaluation addresses two important domain changes,
a real-world domain change, and a synthetic to real-world
domain change. We further show that the self-supervision is
crucial for an effective self-training in the second stage. For
the more important real-world domain change, the source
domain data consists of very stable conditions, while the
target domain data contains a large variety of weather, light-
ing, and sensor configurations. We also study our method’s
performance on the synthetic to real-world domain change.

II. RELATED WORK

Most unsupervised domain adaptation approaches aim to
align the distributions of the source and target domain. This
alignment is either performed in the input space or the feature
space of the neural network.

Some approaches for the former use style transfer to
transform the source domain images to have similar textures
as the target domain images [7, 9, 18].

This work, however, concentrates on the latter approaches,
i. e., we focus on aligning the distributions of the features
of the source and target domain. The following sections
describe recent approaches of distribution alignment in the
feature space using self-training, adverserial training, self-
supervision, contrastive self-supervision, and semantic self-
supervision.

A. Self-Training

Recent self-training approaches achieved great success in
domain adaptation [20, 21]. They use a model trained on the
source domain to annotate images from the target domain.
With these so-called pseudo-labels, the model further trains
on the source domain and the target domain simultaneously.
The challenge with self-training is mitigating the negative
influence of wrongly inferred pseudo-labels.

Pan Zhang et al. manipulate the entries of the predic-
tion vector on the target domain by weighting each class’s
probability with the similarity of its feature representation to
the class’s feature cluster centroid; thus, predictions on the
target domain that are further away from the centroid are
considered to be unlikely, and therefore weighted less in the
training [20]. The proposed self-training presented in [21]
alternates between selecting a subset of the most confident
pseudo-labels on the target domain regarding the current
model and training on the source and target subset data, i. e.,

after each update of the model, they choose another subset
of the target domain for the training. Pan et. al. introduce
the definition of inter- and intra-domain gaps, i. e., gaps
between two domains and between easy and hard images
within one domain, respectively [10]. They combine the self-
training with the self-supervision strategy presented in [16]
(cf. Section II-C).

The self-training approaches mentioned above apply to our
work as well. However, we decided to implement a simple
self-training strategy since we focus on the self-supervision
methodology.

B. Adverserial Training
Adversarial training is based on two networks, a feature

extractor network and a domain discriminator network, clas-
sifying the feature space into source and target domain [1,
16]. The optimization goal is to generate a feature space
that is not discriminable into source and target domain
whilst containing relevant representations for the semantic
segmentation. This approach, however, targets the problem of
unsupervised learning from a different angle and is therefore
not considered further in this work.

C. Self-Supervision
Self-supervision approaches for domain adaptation rely on

pretext tasks [6, 8, 15]. Pretext tasks require the prediction
of annotations automatically generated on both the source
and target domain. For example, rotating or flipping an
image yields a pretext task that requires predicting the
image’s state regarding rotation and flipping. Well-chosen
pretext tasks require similar features as the main task (i. e.,
semantic segmentation in this case), and therefore implicitly
achieve a distribution alignment between the domains in
the feature space. When the distributions of the source and
target domains are aligned, a classifier trained on the source
domain generalizes well to the target domain. The work
presented in [15] uses this approach for domain adaptation
in semantic segmentation. In contrast to the pretext tasks
considered in [6, 8, 15], this work studies the clustering of
feature representations.

Although not considered in this work, it is worth inves-
tigating the combination and synergies of contrastive self-
supervision with our method.

D. Contrastive Self-Supervision
Contrastive self-supervision methods consider pairs of

samples of the same class (positive pairs) or different classes
(negative pairs). The training then aims to minimize the
difference in the feature space between positive pairs and
maximize the difference of negative pairs. Especially in
image classification, this strategy has shown great success
for pre-training [5].

A problem that arises for contrastive self-supervision is
the trade-off between spatial invariance that is beneficial
for classification and spatial sensitivity that is important
for localization tasks like segmentation and detection. The
method presented in [4] addresses this problem with a patch-
wise contrastive self-supervision task.



Fig. 3. This figure shows the integration of the domain adaptation into DeepLabV3+ [2]. The semantic segmentation is trained in a supervised manner
on the source domain. The semantic clustering is applied on the target domain data. The self-supervised clustering is performed on the pre-logit feature
map that is 1/4 the size of the original image.

Domain adaptation problems cannot use target domain
labels, making it challenging to find class-based positive
and negative pairs between the source and target domain.
For positive pairs, Shim and Kim address this problem with
style transfer, i. e., they transform an image from the source
domain to the style of the target domain, which yields a
positive pair [14]. They sample negative pairs, however, from
the same domain only.

E. Semantic Self-Supervision

The goal of semantic self-supervision is a correct cluster-
ing of the pre-logit1 feature space, i. e., feature representa-
tions that contribute to the same class should be in the same
(class’s) cluster [12]. Now, the assumption is that a classifier
trained on the source domain generalizes well to the target
domain when correct clustering was achieved.

Because there are no labels in the target domain, a key
problem of semantic self-supervision is that it is unclear
which cluster a feature representation belongs to. Saito et al.
propose the computation of a similarity matrix from the
feature representations in the target domain to the class’s
cluster centroids in the source domain [12]. Their objective is
to minimize the distance of each feature representation to its
nearest cluster centroid, respectively. This approach assumes
that each feature representation in the target domain is
usually closest to its correct cluster centroid. The challenge is
to mitigate the influence of feature representations for which
this assumption does not hold. To that, Saito et al. minimize
the distance to the cluster centroids and a memory bank of
target representations simultaneously. Their approach, how-
ever, was developed for classification and, as we experienced,
is not feasible for semantic segmentation since in this case,
the memory bank does not fit into memory.

Semantic self-supervision approaches bear a certain simi-
larity to approaches that aim at minimizing the entropy of the
class prediction vector, and hence increasing the probability
of the class with the highest confidence even further [16]:
Decreasing the entropy of the class prediction creates tighter

1The pre-logit layer precedes the classification layer of the network.

clusters of the feature representations. In contrast to this
approach, we aim at clustering the pre-logit feature space.

III. SEMANTIC CLUSTERING

As already suggested in Section II, we define semantic
self-supervision as clustering the pre-logit feature space
representations to class prototypes, i. e., to feature vectors
representing the classes. To achieve such a clustering, a
large amount of feature representations is required. Saito
et al. define class prototypes as weight vectors w =
[w1, w2, w3, ..., wK ] of the classification neurons for each
particular class, respectively [12]. They normalize the ele-
ments of w, and they assume that the final classifier has
no bias term for defining the classifier hyperplanes, both
of which are necessary for the cosine similarity used for
clustering.

However, the approach proposed by Saito et al. not only
clusters the pre-logit feature representations towards class
prototypes but additionally to the pre-logit feature represen-
tations of the target domain samples themselves. In other
words, this approach aims to move feature representations
towards known class prototype and neighboring pre-logit
representations of the target domain.

Saito et al. implement their approach using a memory bank
F of feature representations and weights defined as the tuple

F = [f1, · · · , fNt
, w1, · · · , wK ]

where K represents the number of classes. They propose
to keep track of these feature representations, such that
it represents the network’s current and past state in each
iteration2. In contrast, we do not keep track of the history
but only consider the pre-logit feature representations of the
current target domain sample. In the case of a semantic
segmentation architecture like the one shown in Figure 3, the
number of pre-logit feature representations Nt depends on
the spatial size of the image. For example, the DeepLabV3+
architecture yields Nt = width×height/4. Hence, keeping

2More specifically, Saito et al. keep track of a finite subset of past feature
representations.



track of the past feature representations is not feasible due
to memory limitations.

Just like the elements of w, each entry fi is L2 normalized.
While the tuple F concatenates both the memory bank and
the class prototypes, the tuple

f = [f1, · · · , fNt
]

contains only the feature representations fi. Now, consider
the weighted similarity matrix

pi,j =
exp(FT

j fi/τ)

Zi

between the entries of F and f using the cosine similarity,
where the temperature parameter τ controls the distribution
concentration degree. Again, due to memory limitations, we
sample a subset of 1% of f to obtain the target domain
representations fi we want to cluster. The factor

Zi =

Nt+K∑
j=1,j 6=i

exp(FT
j fi/τ)

normalizes the similarity values analogously to a soft-max
function; thus, the sum of all pj equals 1. Note that we
discard self-similarities (i. e., the similarities of every fi
to itself) since they destroy the clustering to the nearest
neighbor but instead yield a trivial solution, respectively.
Finally, the loss function

Lnc = −
1

|Bt|
∑
i∈Bt

Nt+K∑
j=1,j 6=i

pi,j log(pi,j)

is the entropy of the similarity matrix where |Bt| is the
number of clustered feature representations. Minimizing the
entropy enforces each point to either move closer to a pre-
logit representation or a class prototype.

A. Our Method

Our approach for clustering is inspired by the method
presented in [12] and described above. However, we do
not represent the class prototypes using the normalized
weights of the classification neurons. We argue that these
classification normals are strongly effected by outliers, which
causes the normals to fluctuate a lot during the training
process. Clustering towards a noisy cluster center makes it
hard for the algorithm to converge. Eventually, we obtain
misrepresented centroids of the class representations in the
pre-logit layer. Instead, we propose to compute the centroids
in a probabilistic way as follows.

In every training step, we first compute the pre-logit
representations fs of the batch of source domain images
Bs. Since we implemented our approach on the semantic
segmentation architecture shown in Figure 3, every image
yields a number of width×height/4 pre-logit representations fs
(cf. [2]). We partition the feature representations regarding
the classification results of the model to compute the ex-
pected values EK(fs) for each of the K classes as shown in
Figure 4 (left). Now, each expected value Ek is a centroid for
the cluster of class k, respectively. Why not use the ground

truth instead of the classification results? Representations of
wrongly classified pixels are within another centroids area
instead of being close to their class prototype. Therefore,
they corrupt their centroid’s position by being an outlier.

Since the current Batch Bs only represents a subset of the
entire dataset, we iteratively compute a running average

ck = ck ∗ α+Ek ∗ (1− α)

of the class centroids. Intuitively, α affects the accuracy of
seldom classes. Section IV discusses how to choose this
hyper parameter α.

Given the updated centroids ck, we apply the clustering
method presented in [12] for the samples in the target-
domain Batch Bt. As suggested there, we first perform an
L2 normalization on the class centroids ck and the target-
domain pre-logit feature representations f t that result from
the images present in Bt. Hence, the similarity matrix pi,j
for every fi ∈ f t and class centroid cj is

pi,j =
exp(cTj f

t
i /τ)

Zi
.

We set the neighborhood parameter τ to 0.05 according to
the best practice in [12]. Since cj and f ti are L2 normalized,
computing the dot product yields the cosine similarity as
illustrated in Figure 4 (center). The soft-max normalization
parameter Zi is

Zi =

K∑
j=1

exp(cTj f
t
i /τ).

Finally, the loss function computes the overall entropy of all
elements pi,j :

Lnc = −
1

|Bt|
∑
i∈Bt

K∑
j=1

pi,j log(pi,j)

Figure 4 (right) helps to understand the effect of minimizing
this loss function: Intuitively, each element of f t moves
closer to the centroid that is most similar in terms of the
cosine similarity computed in pi,j .

B. Uncertainty Weights

The loss function described above implicitly assumes that
target samples are closer to the centroid of their respective
ground truth class than to the others3. Since this assumption
does not hold in every case, we extend the original method
with a measure of uncertainty. A standard measure for the
uncertainty of the network predictions is the entropy of the
class confidences. We use this measure to weigh the loss
function

Lnc = −
1

|Bt|
∑
i∈Bt

K∑
j=1

pi,j log(pi,j) ·
1

1 +Hi
,

where Hi is the class confidences’ entropy with respect to
each fi. The weight factor 1/1+Hi mitigates the influence
of target samples that yield a high classification uncertainty.

3This work always considers similarity in terms of the cosine similarity.



Fig. 4. This figure shows feature representations and class centroids of a source domain batch (left), the normalized similarity of a target feature
representation (yellow triangle) to all centroids (center), and the effect of minimizing the entropy (cf. Section III-A), which causes the target representation
to move closer to its closest centroid (right).

Our intuition is that the assumption above is more likely
not to hold when this uncertainty is larger. Unfortunately,
by introducing the entropy as a weighting factor, the loss
function can now be minimized by increasing the term Hi.
We address this problem by scaling down the gradients
produced by this objective with a factor of 0.01; thus, the
objective to cluster the pre-logit representations around the
most similar centroid dominates. We explicitly do not choose
to zero this factor since the objective acts as an additional
counter loss for those cases where the maximum similarity
to a centroid is low.

C. Training Schedule

Figure 3 helps to understand the training strategy. We
train the semantic segmentation based on the pixel-wise
cross-entropy loss function Lseg on the source domain.
Our DeepLabV3+ implementation performs the pixel-wise
classification on a feature map 1/4 of the size of the original
image and subsequently up-scales the result by a bi-linear
interpolation. Hence, the pre-logit feature space we want to
cluster is 1/4 of the size of the original image. We perform the
clustering (and with it the computation of the loss function
Lnc) on the target domain only. Our final loss function is

L = Lseg + λLnc

where λ is a weight parameter that we empirically found
0.02 to be a good value. Since the semantic self-supervision
method requires a tremendous amount of memory, we first
update the network according to Lnc and subsequently Lseg .
As shown in [15], this separate update scheme only has a
limited negative influence on the network’s performance.

D. Self-Training

Multiple approaches for self-training exist that achieve
competitive performance. Approaches like in [20] and [21]
introduce methods for estimating the probability that a
pseudo-label represents the correct class. We did not apply
such methods because our main focus in this work is to show
that our self-supervision method improves the initial quality
of the pseudo-labels and the self-training process itself.

In the first stage, we adopt a semantic segmentation
model to the new domain using supervised-training on the

source domain and semantic self-supervised training, simul-
taneously (cf. Figure 2). In the second stage, we use the
new model to compute the entropy of the pixel-wise class
predictions Pi,j , serving as an uncertainty measure of the
predictions.

H(Pi) = −1 ·
K∑
j=1

Pi,j log(Pi,j)

We apply a threshold of log(K)/4 to this mask to filter out
labels with high uncertainty, i. e., the training ignores all
pixels exceeding this threshold. Half of the batch is chosen
for the training from the source domain and half from the
pseudo-labeled target domain.

We apply our self-supervision method in parallel to the
self-training described above. We argue that the target and
source domain distributions of the pre-logit feature space
are closer aligned with self-training applied. That, in turn,
inherently causes the centroids we determined on the source
domain to better represent the target domain. Hence, it is
more likely that the target-domain pre-logit representations
are most similar to their ground truth class centroids.

IV. EXPERIMENTS

A. Experimental Details

We study two different adaptation scenarios in our eval-
uation, i. e., a synthetic to real-world and a real-world to
real-world adaptation.

In the first scenario, we adapt from the synthetic GTA5
[11] to the real-world Cityscapes dataset [3], both of which
contain the same set of labels. The lack of variety in geom-
etry, texture, and weather or lighting conditions in the sim-
ulated environment makes this delta especially challenging.
However, we mostly pay attention to the real-world to real-
world domain adaptation. In particular, we consider a delta
from a real-world dataset recorded under constant conditions
regarding the environment, weather, and the camera sensor to
a real-world dataset consisting of various environmental and
weather conditions and recorded with different cameras and
camera positions. This delta is represented by the adaptation
from the Cityscapes to the Berkeley Deep Drive dataset
(BDD) [19], both of which contain the same set of labels.
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CITYSCAPES TO BDD
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source 88.56 49.25 70.57 10.24 22.61 37.86 41.96 42.75 73.29 36.52 89.59 58.36 34.32 84.28 24.27 26.35 0.01 46.51 41.65 46.26
memory bank 84.75 39.51 74.64 14.26 17.93 33.37 31.66 34.61 76.98 33.76 87.85 51.77 26.56 75.94 17.02 41.77 0.0 26.43 21.42 41.59

prototype 89.96 48.27 76.68 17.86 26.74 41.44 42.91 44.17 80.31 26.74 90.05 58.69 41.37 84.53 22.87 37.95 1.01 46.4 37.28 48.17
semantic α0.1 90.21 49.75 74.45 14.65 24.68 37.61 42.91 46.17 79.02 31.07 90.27 61.11 48.97 85.1 31.08 30.64 0.06 55.31 53.89 49.84

semantic α0.9918 90.97 52.21 78.48 17.87 30.34 42.7 45.07 44.04 82.6 37.79 90.81 56.93 36.39 81.55 30.54 47.12 0.1 38.79 32.4 49.3
semantic α0.9 90.85 51.44 77.04 14.89 25.98 38.63 43.63 46.19 81.14 36.72 90.65 61.34 48.27 84.63 31.39 49.29 0.6 57.31 49.83 51.54

self-training 92.13 55.33 78.28 18.45 34.53 42.44 45.64 46.1 81.68 40.69 91.13 61.54 47.13 87.13 37.1 43.73 0.01 51.46 44.38 52.58
1. semantic self-training 93.06 57.01 77.98 17.85 34.43 42.76 48.37 47.48 82.25 41.17 91.69 63.66 54.02 87.01 38.08 50.73 0.08 52.69 49.45 54.2
2. semantic self-training 92.37 56.54 78.12 15.02 33.26 41.95 48.06 48.53 81.64 40.69 91.72 64.25 52.58 87.48 37.76 56.65 1.79 55.99 55.11 54.71

Oracle 94.24 61.45 84.54 31.13 49.47 50.49 54.92 51.06 86.17 47.48 94.54 66.0 32.51 89.33 47.9 74.41 0.026 53.64 45.86 58.72

All experiments performed for this paper are based on a
particular implementation of DeepLabV3+4 with a WideRes-
Net38 [17] backbone. In order to achieve a class-balanced
training, the implementation employs a uniform sampling
over the classes for 50% of the source domain images in a
training epoch. We scale the images of the source domain to
obtain equally sized images as in the target domain. Then,
we crop these images randomly to a size of 400 × 400
pixels. Every batch consists of 24 source and, when a domain
adaptation strategy is applied, 24 target images. We trained
the neural net with a stochastic gradient descent optimizer
for 180 and 45 epochs in the real-world to real-world and
synthetic to real-world scenario, respectively. The initial
learning rate is 0.007 and decays each epoch according to
1−epoch/epochmax. We employ a regularizing weight decay of
1e−4 and a momentum to the optimizer of 0.9. In contrast to
the training, the evaluation uses the images in their original
size.

B. Adaptation of the Related Work to Semantic Segmentation

In addition to the method presented in Section III-A, we
performed experiments implementing the method introduced
in [12] and adapted it for semantic segmentation. We evalu-
ated its performance on the domain change from Cityscapes
to BDD as shown in Table III. Building the memory bank
based on the current sample’s feature representations only (as
described in III) leads to worse results than even achieved
with a source-only training, which illustrates the necessity of
additionally holding feature representations of other samples
in the memory bank.

By leaving out the target feature representations and only
putting the class prototypes into the memory bank, we
improved the source-only training of 1.91% in terms of mIoU
and 15.33% relative to the gap (12.46%) between source-
only and source+target training. We conclude that an im-
proved way of constructing the memory bank will positively
influence the overall performance since, as described in [12],
a structured feature space is more discriminable.

C. Fine-Tuning the Centroid Updates

The parameter α, introduced in Section III-A, controls the
update of the centroids representing the classes. As a value

4We used the implementation available at the following URL: https://
github.com/NVIDIA/semantic-segmentation/tree/sdcnet

between 0 and 1, it weights the old state of the centroids
while 1 − α weights the update. We tested different values
for α, as shown in Table I. Our empirical study shows that
α = 0.9 promises the best results. We assume that a low
value like 0.1 causes the centroids to adapt strongly to the
updates, which introduces noise into the clustering process,
and therefore makes it hard for the optimization process to
converge. If α, on the other hand, is chosen too high (e. g.,
α = 0.9918), then the centroids do not represent the current
state of the network, in which case the data is clustered to
the wrong centroids. Hence, a value of α = 0.9 seems to be
a good trade-off.

D. Real-World Domain Change

Table I shows the results when adapting from the real-
world Cityscapes dataset to the real-world Berkeley Deep
Drive dataset (BDD). The challenge, in this case, lies within
the variety of weather conditions (rain, snow, sunny), lighting
conditions (normal sunlight, direct sunlight causing glaring,
twilight, and night), camera types, camera positions, and
locations (rural, urban) of the BDD data. On the other hand,
the Cityscapes dataset only consists of images from urban
parts of Germany recorded under constant weather conditions
with a constant camera setup.

These deltas between the datasets cause the performance
of a model trained on the Cityscapes dataset to drop when
evaluated on the validation set of the BDD dataset. Table I
shows that the mIoU value decreases from 58.72% when
trained on both datasets to 46.26% when trained on the
source domain only. In terms of absolute mIoU values, this
is a difference of 12.46%. For example, Figure 1 shows that
the source-only model has poor quality on twilight and night
images. Applying our self-supervision method presented in
Section III-A eliminates 43.06% of this gap, i. e., the method
achieves an mIoU value of 51.54%. These improvements
are visible in Figure 1. Based on these results, we assume
that our method outperforms the source-only training for
the deltas introduced by glaring, twilight, and nighttime in
general. The uncertainty maps (i. e., the entropy of the class
predictions per pixel) in the top row of Figure 1 show that
our method reduces the overall uncertainty as expected with
clustering to the class centroids. The improved results and
the more interpretable uncertainty maps are, in turn, a good
state for the generation of high-quality pseudo-labels.



TABLE II
GTA5 TO CITYSCAPES
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source 58.39 25.44 68.01 25.55 26.77 40.25 44.62 19.32 84.37 30.78 56.56 69.17 36.64 74.29 24.13 10.86 0.9 29.34 21.07 38.8
Pan et. al. [10] 90.6 37.1 82.6 30.1 19.1 29.5 32.4 20.6 85.7 40.5 79.7 58.7 31.1 86.3 31.5 48.3 0.0 30.2 35.8 46.3
semantic α0.9 72.18 30.79 75.58 26.43 21.25 37.16 37.38 18.72 85.36 30.93 77.44 64.5 27.86 85.65 28.63 27.68 5.54 16.82 14.9 42.34

2. semantic self-training 82.45 43.94 76.42 31.68 24.74 45.24 45.6 22.46 87.09 30.91 82.63 71.04 41.77 86.52 28.02 27.7 0.01 25.54 27.26 46.42
target 98.01 84.41 92.07 49.66 59.69 64.43 68.76 78.22 92.36 63.49 94.3 82.17 62.3 94.82 80.36 85.76 79.74 65.99 76.93 77.55

We generated pseudo-labels for the training split of the
BDD with the best model obtained from the adaptation
through self-supervision. We aim to find a reliable surrogate
metric to estimate the model performance without using a
labeled validation set in future work. E. g., in our experience,
the class accuracy on the source domain validation set
indicates the target domain mIoU quiet well. We discover the
performance of the best possible configuration by training
with pseudo-labels generated with the best model selected
from the validation set.

As described in Section III-D, we evaluate two con-
figurations of self-training for the second training stage.
Table I shows that the mIoU on the target domain increases
by 1.04% with simple self-training applied. The additional
introduction of our self-supervision loss into the optimization
process gains the improvement even further. Expressed in ab-
solute terms, we improve the mIoU by 3.17% in comparison
to the self-supervised training; and by 2.13% in comparison
to the simple self-training. We close 64.45% of the original
gap of 12.46% mIoU. Our two methods (1. and 2. semantic
self-training) achieve the best results in 13 out of 19 classes
and are even better than the combined training on the source
and target domain for the classes train, bicycle, rider, and
motorbike.

We decide between the two methods based on the follow-
ing reason. As shown in Table I, we evaluate two versions of
the self-supervision assisted self-training, the first of which
applies the uncertainty weights introduced in Section III-B
(cf. Table I, 2. semantic self-training), and the second of
which does not use these weights (cf. Table I, 1. semantic
self-training). We observe a gain of 0.51% in terms of mIoU
with the usage of the uncertainty weights. This indicates that
introducing uncertainty weights can mitigate the influence of
cases where the pre-logit target domain representations are
clustered to the wrong centroids. We even achieved slightly
better results than the method presented in [10] which is
close to our method in some aspects.5 However, there still
is room for improvement.

E. Synthetic to Real-world Domain Change

We developed our methods on the real-world domain
change described in the previous section. For further impres-
sions about the performance, we analyzed the resulting best
models on the synthetic to real-world domain change (i. e.,

5Remark that they configured their experiments differently, i. e., they used
different learning rates, network architectures, etc.

from GTA5 to Cityscapes). However, we did no special fine-
tuning of the hyperparameters to achieve the results shown
in Table II.

The source-only training achieves an mIoU of 38.8%
which is 38.7% lower than training on the target domain only
(which yields 77.55%). The magnitude of the performance
gap indicates a big domain gap between the simulated data
and real-world data. Applying our self-supervision method
(with an α value of 0.9) for domain adaptation as described
in Section III-A improves the performance on the target
domain by 3.45% mIoU. Again, as described in the Sec-
tion IV-D, we choose this model to generate pseudo-labels
for the self-training on the Cityscapes dataset. For the self-
training, we again choose the best configuration obtained
from the experiments on the real-world to real-world domain
change. We hence apply the self-supervision method with
the uncertainty weights and therefore gain an improvement
of 4.08% mIoU over the mere self-supervised training and
an improvement of 7.62% over the source-only training.

V. CONCLUSION

We have developed a semantic self-supervision method
for domain adaptation in semantic segmentation. We view
self-supervision as an important building block for the more
general task of domain adaptation. As shown in this work,
our self-supervision method can be applied in parallel to
other domain adaptation approaches like self-training.

We want to investigate further surrogate measures for the
target-domain performance. This way, one can select the best
model for the target domain without acquiring an expensive
validation set. Concerning our method, we want to deal
with class imbalance on the target domain since the random
sampling of target domain images introduces a bias towards
more frequent classes.
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