elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Quantum Annealer for Subset Feature Selection and the Classification of Hyperspectral Images

Otgonbaatar, Soronzonbold und Datcu, Mihai (2021) A Quantum Annealer for Subset Feature Selection and the Classification of Hyperspectral Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, Seiten 7057-7065. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3095377. ISSN 1939-1404.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
1MB

Offizielle URL: https://ieeexplore.ieee.org/document/9477115

Kurzfassung

Hyperspectral images showing objects belonging to several distinct target classes are characterized by dozens of spectral bands being available. However, some of these spectral bands are redundant and/or noisy, and hence, selecting highly informative and trustworthy bands for each class is a vital step for classification and for saving internal storage space; then the selected bands are termed a highly-informative spectral band subset. We use a Mutual Information (MI)-based method to select the spectral band subset of a given class and two additional binary quantum classifiers, namely a quantum boost (Qboost) and a quantum boost plus (Qboost-Plus) classifier, to classify a two-label dataset characterized by the selected band subset. We pose both our MI-based band subset selection problem and the binary quantum classifiers as a quadratic unconstrained binary optimization (QUBO) problem. Thus, we adapted our MI-based optimization problem for selecting highly-informative bands for each class of a given hyperspectral image to be run on a D-Wave quantum annealer. After the selection of these highly-informative bands for each class, we employ our binary quantum classifiers to a two-label dataset on the D-Wave quantum annealer. In addition, we provide a novel multi-label classifier exploiting an Error-Encoding Output Code (ECOC) when using our binary quantum classifiers. As a real-world dataset in Earth observation, we used the well known AVIRIS hyperspectral image (HSI) of Indian Pine, northwestern Indiana, USA.

elib-URL des Eintrags:https://elib.dlr.de/143093/
Dokumentart:Zeitschriftenbeitrag
Titel:A Quantum Annealer for Subset Feature Selection and the Classification of Hyperspectral Images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Otgonbaatar, SoronzonboldSoronzonbold.Otgonbaatar (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiMihai.Datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:13 Juli 2021
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.1109/JSTARS.2021.3095377
Seitenbereich:Seiten 7057-7065
Verlag:IEEE - Institute of Electrical and Electronics Engineers
Name der Reihe:SPECIAL ISSUE ON “QUANTUM RESOURCES FOR EARTH OBSERVATION”
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Hyperspectral images, Mutual Information, Feature selection, Quantum classifier, Quantum Machine Learning, D-wave quantum annealer
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz, R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Otgonbaatar, Soronzonbold
Hinterlegt am:19 Jul 2021 10:29
Letzte Änderung:16 Jun 2023 09:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.