Otgonbaatar, Soronzonbold und Datcu, Mihai (2021) A Quantum Annealer for Subset Feature Selection and the Classification of Hyperspectral Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, Seiten 7057-7065. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3095377. ISSN 1939-1404.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9477115
Kurzfassung
Hyperspectral images showing objects belonging to several distinct target classes are characterized by dozens of spectral bands being available. However, some of these spectral bands are redundant and/or noisy, and hence, selecting highly informative and trustworthy bands for each class is a vital step for classification and for saving internal storage space; then the selected bands are termed a highly-informative spectral band subset. We use a Mutual Information (MI)-based method to select the spectral band subset of a given class and two additional binary quantum classifiers, namely a quantum boost (Qboost) and a quantum boost plus (Qboost-Plus) classifier, to classify a two-label dataset characterized by the selected band subset. We pose both our MI-based band subset selection problem and the binary quantum classifiers as a quadratic unconstrained binary optimization (QUBO) problem. Thus, we adapted our MI-based optimization problem for selecting highly-informative bands for each class of a given hyperspectral image to be run on a D-Wave quantum annealer. After the selection of these highly-informative bands for each class, we employ our binary quantum classifiers to a two-label dataset on the D-Wave quantum annealer. In addition, we provide a novel multi-label classifier exploiting an Error-Encoding Output Code (ECOC) when using our binary quantum classifiers. As a real-world dataset in Earth observation, we used the well known AVIRIS hyperspectral image (HSI) of Indian Pine, northwestern Indiana, USA.
elib-URL des Eintrags: | https://elib.dlr.de/143093/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | A Quantum Annealer for Subset Feature Selection and the Classification of Hyperspectral Images | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 13 Juli 2021 | ||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Ja | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 14 | ||||||||||||
DOI: | 10.1109/JSTARS.2021.3095377 | ||||||||||||
Seitenbereich: | Seiten 7057-7065 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
Name der Reihe: | SPECIAL ISSUE ON “QUANTUM RESOURCES FOR EARTH OBSERVATION” | ||||||||||||
ISSN: | 1939-1404 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Hyperspectral images, Mutual Information, Feature selection, Quantum classifier, Quantum Machine Learning, D-wave quantum annealer | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||
Hinterlegt am: | 19 Jul 2021 10:29 | ||||||||||||
Letzte Änderung: | 16 Jun 2023 09:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags