Heidler, Konrad und Mou, LiChao und Baumhoer, Celia und Dietz, Andreas und Zhu, Xiao Xiang (2021) HED-UNet: A multi-scale framework for simultaneous segmentation and edge detection. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9553585.
PDF
609kB |
Kurzfassung
Segmentation models for remote sensing imagery are usually trained on the segmentation task alone. However, for many applications, the class boundaries carry semantic value. To account for this, we propose a new approach that unites both tasks within a single deep learning model. The proposed network architecture follows the successful encoder-decoder approach, and is improved by employing deep supervision at multiple resolution levels, as well as merging these resolution levels into a final prediction using a hierarchical attention mechanism. This framework is trained to detect the coastline in Sentinel-1 images of the Antarctic coastline. Its performance is then compared to conventional single-task approaches, and shown to outperform these methods. The code is available at https://github.com/khdlr/HED-UNet
elib-URL des Eintrags: | https://elib.dlr.de/143088/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | HED-UNet: A multi-scale framework for simultaneous segmentation and edge detection | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9553585 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Semantic segmentation, edge detection, Antarctica, glacier front | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||||||||||
Veranstaltungsort: | Brussels, Belgium | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 12 Juli 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche | ||||||||||||||||||||||||
Hinterlegt von: | Heidler, Konrad | ||||||||||||||||||||||||
Hinterlegt am: | 19 Jul 2021 10:31 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags