Song, Qian und Xu, Feng und Zhu, Xiao Xiang (2021) Physical-aware Radar Image Synthesis with Projective Network. In: 34th General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2021 (Scopus; ISSN: ), Seiten 1-4. URSI GASS 2021, 2021-08-28 - 2021-09-04, Rome, Italy. doi: 10.23919/URSIGASS51995.2021.9560559.
PDF
337kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9560559
Kurzfassung
This paper proposed a new network module named as projection network. It assumes that each 2D radar cross section (RCS) map is a projection of a 3D RCS map. And it models the projection mechanism as a differentiable layer, so that it can be integrated with other neural network layers, such as convolutional and pooling layers. The proposed model is consistent with radar projection process, hence effects such as layover is considered. It is designed and used specifically for radar applications. This paper applied the proposed network on radar image synthesis, and the simulation results showed great potential of projective network.
elib-URL des Eintrags: | https://elib.dlr.de/142831/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Physical-aware Radar Image Synthesis with Projective Network | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2021 | ||||||||||||||||
Erschienen in: | 34th General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2021 (Scopus; ISSN: ) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.23919/URSIGASS51995.2021.9560559 | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Projective Network, Radar Image | ||||||||||||||||
Veranstaltungstitel: | URSI GASS 2021 | ||||||||||||||||
Veranstaltungsort: | Rome, Italy | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 28 August 2021 | ||||||||||||||||
Veranstaltungsende: | 4 September 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Song, Qian | ||||||||||||||||
Hinterlegt am: | 25 Nov 2021 11:41 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags