Huang, Zhongling und Dumitru, Corneliu Octavian und Ren, Jun (2021) Physics-aware feature learning of SAR images with deep neural networks: A case study. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554842.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://igarss2021.com/view_paper.php?PaperNum=2617
Kurzfassung
This paper proposes a novel unsupervised learning method to learn discriminative physics-aware features of Synthetic Aperture Radar images with deep neural networks. We conduct a case study of sea-ice classification using Sentinel-1Dual-polarized SAR data and the corresponding scattering mechanisms derived from H/αWishart classification. The scattering mechanisms are encoded as a combination of topics for each SAR image as physics attributes, which guide the deep convolutional neural network to learn physics-aware features automatically. A novel objective function is designed to demonstrate how to conduct the physics-guided learning processing. The experiments show the proposed method can learn discriminative features from SAR images without labeled data, which can achieve a comparable classification result with supervised CNN learning.
elib-URL des Eintrags: | https://elib.dlr.de/142805/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Physics-aware feature learning of SAR images with deep neural networks: A case study | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554842 | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Physics-guided learning, feature learning, SAR image understanding, sea-ice classification, deep learning | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||
Veranstaltungsort: | Brussels, Belgium | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 12 Juli 2021 | ||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||
Hinterlegt am: | 24 Jun 2021 09:50 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags