elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Semantic Labeling of Globally Distributed Urban and Nonurban Satellite Images Using High-Resolution SAR Data

Dumitru, Corneliu Octavian und Schwarz, Gottfried und Datcu, Mihai (2021) Semantic Labeling of Globally Distributed Urban and Nonurban Satellite Images Using High-Resolution SAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, Seiten 6009-6068. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3084314. ISSN 1939-1404.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
13MB

Offizielle URL: https://ieeexplore.ieee.org/document/9442872

Kurzfassung

While the analysis and understanding of multispectral (i.e., optical) remote sensing images has made considerable progress during the last decades, the automated analysis of SAR (Synthetic Aperture Radar) satellite images still needs some innovative techniques to support non-expert users in the handling and interpretation of these big and complex data. In this paper, we present a survey of existing multispectral and SAR land cover image datasets. To this end, we demonstrate how an advanced SAR image analysis system can be designed, implemented, and verified that is capable of generating semantically annotated classification results (e.g., maps) as well as local and regional statistical analytics such as graphical charts. The initial classification is made based on Gabor features and followed by class assignments (labelling). This is followed by the inclusion. This can be accomplished by the inclusion of expert knowledge via active learning with selected examples, and the extraction of additional knowledge from public databases to refine the classification results. Then, based on the generated semantics, we can create new topic models, find typical country-specific phenomena and distributions, visualize them interactively, and present significant examples including confusion matrices. This semi-automated and flexible methodology allows several annotation strategies, the inclusion of dedicated analytics procedures, and can generate broad as well as detailed semantic (multi-)labels for all continents, and statistics or models for selected countries and cities. Here, we employ knowledge graphs and exploit ontologies. These components could already be validated successfully. The proposed methodology can also be adapted to other instruments.

elib-URL des Eintrags:https://elib.dlr.de/142801/
Dokumentart:Zeitschriftenbeitrag
Titel:Semantic Labeling of Globally Distributed Urban and Nonurban Satellite Images Using High-Resolution SAR Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dumitru, Corneliu OctavianCorneliu.Dumitru (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schwarz, GottfriedGottfried.Schwarz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiMihai.Datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:27 Mai 2021
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.1109/JSTARS.2021.3084314
Seitenbereich:Seiten 6009-6068
Verlag:IEEE - Institute of Electrical and Electronics Engineers
Name der Reihe:IEEE
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Active learning, datasets, high-resolution satellite images, knowledge extraction, ontologies, SAR, semantic classes, TerraSAR-X
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Dumitru, Corneliu Octavian
Hinterlegt am:23 Jun 2021 14:23
Letzte Änderung:16 Jun 2023 09:53

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.