Memmel, Elena and Schlüters, Sunke and Völker, Rasmus and Schuldt, Frank and von Maydell, Karsten and Agert, Carsten (2021) Forecast of Renewable Curtailment in Distribution Grids Considering Uncertainties. IEEE Access, 9, pp. 60828-60840. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/ACCESS.2021.3073754. ISSN 2169-3536.
![]() |
PDF
- Published version
2MB |
Abstract
Renewable energies curtailment induced by grid congestions increase due to grown renewable energies integration and the resulting mismatch of grid expansion. Short-term predictions for curtailment can help to increase the efficiency of its management. This paper proposes a novel, holistic approach of a short-term curtailment prediction for distribution grids. The load flow calculations for congestion detection are realized by taking different operational security criteria into account, whereas the models for the node-injections are adjusted to the characteristic of each grid node specifically. The determination of required curtailment based on the resulting congestions considers uncertainties of component loading and its corresponding probability. The forecast model is validated using an actual 110 kV distribution grid located in Germany. In order to meet the requirements of a forecast model designed for operational business, prediction accuracy, and its greatest source of error are analyzed. Furthermore, a suitable length of training data is investigated. Results indicate that a six month time period for maintenance gains the highest accuracy. Curtailment prediction accuracy is better for transmission system operator components than for distribution system operator components, but the Słrensen Dice factor for the aggregated grid shows a high match of historic and predicted curtailment with a value of 0.84 and a low error for curtailed energy, which makes 2.23% of the historic curtailed energy. The model is a promising approach, which can contribute to improvement of curtailment strategies and enable valuable insight into distribution grids.
Item URL in elib: | https://elib.dlr.de/142664/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Forecast of Renewable Curtailment in Distribution Grids Considering Uncertainties | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 16 April 2021 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Access | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 9 | ||||||||||||||||||||||||||||
DOI: | 10.1109/ACCESS.2021.3073754 | ||||||||||||||||||||||||||||
Page Range: | pp. 60828-60840 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 2169-3536 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Power system operation, distribution grid, power flow analysis, congestion management, renewable power curtailment, short-term prediction, probabilistic uncertainty quantification | ||||||||||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||||||||||
HGF - Program: | Energy System Design | ||||||||||||||||||||||||||||
HGF - Program Themes: | Digitalization and System Technology | ||||||||||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||||||||||
DLR - Program: | E SY - Energy System Technology and Analysis | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | E - Energy System Technology | ||||||||||||||||||||||||||||
Location: | Oldenburg | ||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Networked Energy Systems > Energy System Technology | ||||||||||||||||||||||||||||
Deposited By: | Memmel, Elena | ||||||||||||||||||||||||||||
Deposited On: | 21 Jun 2021 11:13 | ||||||||||||||||||||||||||||
Last Modified: | 24 May 2022 23:47 |
Repository Staff Only: item control page