Rettelbach, Tabea und Grosse, Guido und Nitze, Ingmar und Brauchle, Jörg und Bucher, Tilman und Gessner, Matthias und Jones, Benjamin M. und Boike, Julia und Langer, Moritz und freytag, Johann-Christoph (2020) A Quantitative Graph-Based Assessment of Ice-Wedge Trough Dynamics in Polygonal Thermokarst Landscapes of the Anaktuvuk River Fire Scar. AGU Fall Meeting 2020, 2020-12-01 - 2020-12-17, Online.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/671579
Kurzfassung
While increasing Arctic temperatures have been identified to induce widespread thermokarst development in permafrost lowland landscapes over only several decades, disturbances, such as tundra fires can cause similar impacts within a few years. Transition from low-centered to high-centered polygons through the formation of troughs is an immediate result of melting ice wedges 3-4 years after a fire (Jones et al., 2015). Liljedahl et al (2016) have shown that widespread ice-wedge degradation can lead to hydrological connectivity and increased drainage of entire landscapes through newly developing trough networks. Quantifying such dynamics is important for projecting the hydrological outcomes of climate change impacts across vast Arctic landscapes. New VHR remote sensing approaches allow assessing ice wedge polygonal structures and their change in unprecedented detail. Data science methods provide valuable tools for understanding and modeling resulting very large datasets of changing ice wedge networks. Here we quantify thermokarst development representing the network of troughs as a graph, a concept from discrete mathematics used to model complex networks. Our analysis is based on optical VHR aerial imagery of the DLR MACS sensors and DSMs derived from LiDAR. Datasets are available for 2009, 2014 and 2019 of the northern Anaktuvuk River Fire scar in Alaska, which formed due to a large tundra fire in 2007. In particular, the post-fire permafrost degradation is observable in the northern ice-rich region of the fire scar on short timescales, offering an ideal site for the monitoring of degradation processes. We use morphological image analysis to extract a graph from the imagery and further deduce trough parameters, such as soil volume, depth, and water availability. Quantifying these factors for the study area shows that soil erosion and ice melt within individual troughs have progressed, while the overall connectivity of the network has increased, implying strong thermo-erosion since 2009. Using graphs to monitor the ongoing development offers a detailed and computationally efficient method that will allow quantification of ice-wedge degradation over very large spatial and temporal scales and may provide useful metrics for projecting landscape trajectories in thaw-vulnerable permafrost environments.
elib-URL des Eintrags: | https://elib.dlr.de/142635/ | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||||||||||||||
Titel: | A Quantitative Graph-Based Assessment of Ice-Wedge Trough Dynamics in Polygonal Thermokarst Landscapes of the Anaktuvuk River Fire Scar | ||||||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||
Datum: | Dezember 2020 | ||||||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||||||
Stichwörter: | Permafrost, remote sensing, polygonal strutures, thermokarst, graph-based | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | AGU Fall Meeting 2020 | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | Online | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 1 Dezember 2020 | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 17 Dezember 2020 | ||||||||||||||||||||||||||||||||||||||||||||
Veranstalter : | American Geophysical Union | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Polar Monitor | ||||||||||||||||||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Optische Sensorsysteme > Sicherheitsforschung und Anwendungen | ||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Bucher, Tilman | ||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 10 Jun 2021 07:59 | ||||||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags