elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Further Adventures in Mars DTM Quality; Smoothing Errors, Sharpening Details

Kirk, R.L. and Mayer, D.P. and Redding, B.L. and Galuszka, D.M. and Fergason, R.L. and Hare, T. and Gwinner, Klaus (2021) Further Adventures in Mars DTM Quality; Smoothing Errors, Sharpening Details. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII. XXIV ISPRS Congress, 2021-07-05 - 2021-07-09, Nizza, Frankreich / Virtuell. doi: 10.5194/isprs-archives-XLIII-B3-2021-659-2021. ISSN 1682-1750.

[img] PDF
848kB

Official URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2021/659/2021/

Abstract

We have used high-precision, high-resolution digital terrain models (DTMs) of the NASA Mars Science Laboratory and Mars 2020 rover landing sites based on mosaicked images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (MRO HiRISE) camera as a reference data set to evaluate DTMs based on Mars Express High Resolution Stereo Camera (MEX HRSC) images. The Next Generation Automatic Terrain Extraction (NGATE) matcher in the SOCET SET/GXP® commercial photogram- metric system produces DTMs with relatively good (small) horizontal resolution but high error, and results are terrain dependent, with poorer resolution and smaller errors on smoother surfaces. Multiple approaches to smoothing the NGATE DTMs give very similar tradeoffs between resolution and error. Smoothing the NGATE DTMs with a 5x5 lowpass filter is near optimal in terms of both combined resolution-error performance and local slope estimation, but smoothing with a single pass of an area-based matcher, which has been the standard approach for generating planetary DTMs at the U.S. Geological Survey to date results in similar errors and only slightly worse resolution. DTMs from the HRSC team processing pipeline fall within this same trade space but are less sensitive to terrain roughness. DTMs produced with the Ames Stereo Pipeline also fall in this space at resolutions intermediate between NGATE and the team pipeline. Although DTM resolution and error each vary by a factor of 2, the product of resolution and error is much more consistent, varying by ≤20% across multiple image sets and matching algorithms. Refinement of the stereo DTM by photoclinometry can yield significant quantitative improvement in resolution and some improvement in error (improving their product by as much as a factor of 2), provided that albedo variations over distances smaller than the stereo DTM resolution are not too severe.

Item URL in elib:https://elib.dlr.de/142552/
Document Type:Conference or Workshop Item (Speech)
Title:Further Adventures in Mars DTM Quality; Smoothing Errors, Sharpening Details
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Kirk, R.L.U.S. Geological Survey, Flagstaff, AZ, USAUNSPECIFIEDUNSPECIFIED
Mayer, D.P.U.S. Geological Survey, Flagstaff, AZ, USAUNSPECIFIEDUNSPECIFIED
Redding, B.L.U.S. Geological Survey, Flagstaff, AZ, USAUNSPECIFIEDUNSPECIFIED
Galuszka, D.M.U.S. Geological Survey, Flagstaff, AZ, USAUNSPECIFIEDUNSPECIFIED
Fergason, R.L.U.S. Geological Survey, Flagstaff, AZ, USAUNSPECIFIEDUNSPECIFIED
Hare, T.United States Geological Survey, Flagstaff, AZ, USAUNSPECIFIEDUNSPECIFIED
Gwinner, KlausUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2021
Journal or Publication Title:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
Volume:XLIII
DOI:10.5194/isprs-archives-XLIII-B3-2021-659-2021
ISSN:1682-1750
Status:Published
Keywords:Digitale Höhenmodelle, Mars, Auflösung, Genauigkeit
Event Title:XXIV ISPRS Congress
Event Location:Nizza, Frankreich / Virtuell
Event Type:international Conference
Event Start Date:5 July 2021
Event End Date:9 July 2021
Organizer:ISPRS
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space Exploration
DLR - Research area:Raumfahrt
DLR - Program:R EW - Space Exploration
DLR - Research theme (Project):R - Project Mars Express HRSC (old)
Location: Berlin-Adlershof
Institutes and Institutions:Institute of Planetary Research > Planetary Geodesy
Deposited By: Gwinner, Klaus
Deposited On:05 Oct 2021 10:11
Last Modified:24 Apr 2024 20:42

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.