Otgonbaatar, Soronzonbold und Datcu, Mihai (2021) Quantum Annealer for Network Flow Minimization in InSAR Images. FRINGE 2021, 2021-05-31 - 2021-06-01, virtual.
|
PDF
1MB |
Offizielle URL: https://www.youtube.com/watch?v=nTy6_cwUrzI
Kurzfassung
Quantum Machine Learning is a young field of resarch, and it promises to provide the computational advantage over a conventional method for a family of problems in a practical domain. For practical problems in Earth observation (EO), the deluge of remotely-sensed images counting hundreds of Terabytes per day needs to be converted into meaningful information, largely impacting the socio-economic-environmental triangle. The particularity of EO images as “instrument” measurements extends the challenge of information extraction beyond the spatial information, as EO sensors gather physical parameters of a scene. Hence, our objectives are to enlarge the current methodologies and achievements made in emergent Quantum Machine Learning using a D-Wave quantum annealer as well as a gate-based quantum computer. As an exploratory work, we present the result obtained from the practical optimization problem in EO when appying a D-Wave quantum annealer.
| elib-URL des Eintrags: | https://elib.dlr.de/142359/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||
| Titel: | Quantum Annealer for Network Flow Minimization in InSAR Images | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | Juni 2021 | ||||||||||||
| Referierte Publikation: | Nein | ||||||||||||
| Open Access: | Ja | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Nein | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Quantum Machine Learning, D-Wave quantum annealer, optimization, Earth observation, InSAR | ||||||||||||
| Veranstaltungstitel: | FRINGE 2021 | ||||||||||||
| Veranstaltungsort: | virtual | ||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||
| Veranstaltungsbeginn: | 31 Mai 2021 | ||||||||||||
| Veranstaltungsende: | 1 Juni 2021 | ||||||||||||
| Veranstalter : | ESA | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
| Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||
| Hinterlegt am: | 28 Mai 2021 16:31 | ||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags