elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multi-Agent Learning-based Control of Hybrid Battery Management Systems

Busch, Bastian (2021) Multi-Agent Learning-based Control of Hybrid Battery Management Systems. Masterarbeit, Technische Universität München.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The proliferation of electrically powered vehicles has not proceeded as quickly as climate pacts aiming to reduce greenhouse gas emission would require it. Alongside improvements in battery technology, optimizing the management of battery systems can empower the switch from internal combustion engines to electric vehicles. As the performance of battery systems can be limited by the weakest individual battery cells, maintaining balance among the cells is a primary goal of battery management systems. The smart hybrid battery system developed at the Institute of System Dynamics and Control at the German Aerospace Center (DLR) augments a traditional battery storage system with dedicated power converters and supercapacitors, allowing it to redistribute energy between battery cells. Through intelligent control, this system is capable of balancing cell states efficiently and protecting weak cells from aggressive use. In this thesis, the task of generating the setpoints of the balancing currents is solved by a decentralized multi-agent reinforcement learning approach. Each of the battery modules is afforded a separate control element, which is aimed at providing scalability to battery systems of realistic sizes.

elib-URL des Eintrags:https://elib.dlr.de/142290/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Multi-Agent Learning-based Control of Hybrid Battery Management Systems
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Busch, BastianNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:31 März 2021
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:83
Status:veröffentlicht
Stichwörter:Reinforcement learning, deep learning, artifical intelligence, neural network, control, battery, battery management, battery storage, system, hybrid battery, supercapacitor
Institution:Technische Universität München
Abteilung:Department of Informatics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - NGC Antriebssystem und Energiemanagement (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Systemdynamik und Regelungstechnik > Fahrzeug-Systemdynamik
Hinterlegt von: Mirwald, Jonas
Hinterlegt am:17 Mai 2021 15:44
Letzte Änderung:17 Mai 2021 15:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.