Prexl, Jonathan und Saha, Sudipan und Zhu, Xiao Xiang (2021) Mitigating Spatial and Spectral Differences for Change Detection using Super-resolution and Unsupervised learning. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IEEE. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels / Virtual. doi: 10.1109/IGARSS47720.2021.9554789.
PDF
504kB |
Offizielle URL: http://igarss2021.com
Kurzfassung
Change detection (CD) is one of the most researched areas in remote sensing. However, most CD methods assume that the pre-change and post-change images are acquired by the same sensor, having the same set of spectral bands and same spatial resolution. This severely limits the applicability of CD methods. It is not trivial to apply the existing CD methods in multisensor scenario. Towards this direction, we propose an unsupervised CD method that can handle large differences in spatial resolution and can work with completely different set of spectral bands. The proposed method uses a self-supervised super-resolution strategy to upsample the lower resolution image, thus mitigating differences in spatial resolution. To mitigate spectral differences, a self-supervised learning strategy is used that ingests both images as input and trains a network using self-supervised loss accounting for the spectral differences in both images. Once trained this network is used in deep change vector analysis framework for change detection. We validated the proposed method in an experimental setup where the pre-change and post-change images have different spatial resolution (10 m and 20 m/pixel) and completely disjoint set of spectral bands.
elib-URL des Eintrags: | https://elib.dlr.de/142280/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Anderer) | ||||||||||||||||
Titel: | Mitigating Spatial and Spectral Differences for Change Detection using Super-resolution and Unsupervised learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554789 | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | change detection, super resolution, unsupervised learning, spatial and spectral differences | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||
Veranstaltungsort: | Brussels / Virtual | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||
Hinterlegt am: | 21 Mai 2021 16:04 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags