Bauer, Christian and Wagner, Claus (2021) The Largest Scales in Turbulent Pipe FLow. In: High Performance Computing in Science and Engineering – Garching/Munich 2020 Leibniz-Rechenzentrum (LRZ). pp. 148-149. ISBN 978-3-9816675-4-7.
![]() |
PDF
- Only accessible within DLR
1MB |
Official URL: https://doku.lrz.de/display/PUBLIC/Books+with+results+on+LRZ+HPC+Systems
Abstract
A large amount of the energy needed to push fluids through pipes worldwide is dissipated by viscous turbulence in the vicinity of solid walls. Therefore the study of wallbounded turbulent flows is not only of theoretical interest but also of practical importance for many engineering applications. In wallbounded turbulence the energy of the turbulent fluctuations is distributed among different scales. The largest energetic scales are denoted as superstructures or verylargescale motions (VLSMs). In our project we carry out direct numerical simulations (DNSs) of turbulent pipe flow aiming at the understanding of the energy exchange between VLSMs and the smallscale coherent structures. While the nearwall smallscale structures scale in viscous units, the outer flow VLSMs scale in bulk units. Hence the range of scales increases as the Reynolds number of the flow increases. In order to study the interaction between these structures, we carried out DNSs of friction Reynolds numbers up to ReΤ=2,880, where ReΤ=uΤR/ν is based on the friction velocity, the pipe radius and the kinematic viscosity. Besides a large Reynolds number, required for large scale separation, a sufficiently long computational domain is needed for VLSMs to settle. In a preliminary study the required computational domain length was estimated to L=42R.
Item URL in elib: | https://elib.dlr.de/142187/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Contribution to a Collection | ||||||||||||||||||||||||
Title: | The Largest Scales in Turbulent Pipe FLow | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | May 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | High Performance Computing in Science and Engineering – Garching/Munich 2020 | ||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Page Range: | pp. 148-149 | ||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||
Publisher: | Leibniz-Rechenzentrum (LRZ) | ||||||||||||||||||||||||
ISBN: | 978-3-9816675-4-7 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Turbulent Pipe Flow, Direct Numerical Simulation, High Performance Computing | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||||||
HGF - Program Themes: | Rail Transport | ||||||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||||||
DLR - Program: | V SC Schienenverkehr | ||||||||||||||||||||||||
DLR - Research theme (Project): | V - NGT BIT (old) | ||||||||||||||||||||||||
Location: | Göttingen | ||||||||||||||||||||||||
Institutes and Institutions: | Institute for Aerodynamics and Flow Technology > Ground Vehicles | ||||||||||||||||||||||||
Deposited By: | Bauer, Christian | ||||||||||||||||||||||||
Deposited On: | 17 May 2021 17:00 | ||||||||||||||||||||||||
Last Modified: | 18 May 2021 21:20 |
Repository Staff Only: item control page