Beyer, Kirstin and Beckmann, Robert and Geißendörfer, Stefan and von Maydell, Karsten and Agert, Carsten (2021) Adaptive Online-Learning Volt-Var Control for Smart Inverters Using Deep Reinforcement Learning. Energies, 14 (7), p. 1991. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en14071991. ISSN 1996-1073.
![]() |
PDF
- Published version
2MB |
Official URL: http://dx.doi.org/10.3390/en14071991
Abstract
The increasing penetration of the power grid with renewable distributed generation causes significant voltage fluctuations. Providing reactive power helps balancing the voltage in the grid. This paper proposes a novel adaptive volt-var control algorithm on the basis of Deep reinforcement learning. The learning agent is an online-learning deep deterministic policy gradient that is applicable under real-time conditions in smart inverters for reactive power management. The algorithm only uses input data from the grid connection point of the inverter itself; thus, no additional communication devices are needed and it can be applied individually to any inverter in the grid. The proposed volt-var control is successfully simulated at various grid connection points in a 21-bus low-voltage distribution test feeder. The resulting voltage behavior is analyzed and a systematic voltage reduction is observed both in a static grid environment and a dynamic environment. The proposed algorithm enables flexible adaption to changing environments through continuous exploration during the learning process and, thus, contributes to a decentralized, automated voltage control in future power grids.
Item URL in elib: | https://elib.dlr.de/142116/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Adaptive Online-Learning Volt-Var Control for Smart Inverters Using Deep Reinforcement Learning | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 3 April 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | Energies | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||||||
DOI: | 10.3390/en14071991 | ||||||||||||||||||||||||
Page Range: | p. 1991 | ||||||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 1996-1073 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | deep reinforcement learning; low-voltage grid; reactive power; smart inverter; voltage control; volt-var-optimization | ||||||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||||||
HGF - Program: | Energy System Design | ||||||||||||||||||||||||
HGF - Program Themes: | Digitalization and System Technology | ||||||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||||||
DLR - Program: | E SY - Energy System Technology and Analysis | ||||||||||||||||||||||||
DLR - Research theme (Project): | E - Energy System Technology | ||||||||||||||||||||||||
Location: | Oldenburg | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Networked Energy Systems > Energy System Technology | ||||||||||||||||||||||||
Deposited By: | Geißendörfer, Dr. Stefan | ||||||||||||||||||||||||
Deposited On: | 06 May 2021 09:06 | ||||||||||||||||||||||||
Last Modified: | 24 May 2022 23:47 |
Repository Staff Only: item control page