Beyer, Kirstin und Beckmann, Robert und Geißendörfer, Stefan und von Maydell, Karsten und Agert, Carsten (2021) Adaptive Online-Learning Volt-Var Control for Smart Inverters Using Deep Reinforcement Learning. Energies, 14 (7), Seite 1991. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en14071991. ISSN 1996-1073.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: http://dx.doi.org/10.3390/en14071991
Kurzfassung
The increasing penetration of the power grid with renewable distributed generation causes significant voltage fluctuations. Providing reactive power helps balancing the voltage in the grid. This paper proposes a novel adaptive volt-var control algorithm on the basis of Deep reinforcement learning. The learning agent is an online-learning deep deterministic policy gradient that is applicable under real-time conditions in smart inverters for reactive power management. The algorithm only uses input data from the grid connection point of the inverter itself; thus, no additional communication devices are needed and it can be applied individually to any inverter in the grid. The proposed volt-var control is successfully simulated at various grid connection points in a 21-bus low-voltage distribution test feeder. The resulting voltage behavior is analyzed and a systematic voltage reduction is observed both in a static grid environment and a dynamic environment. The proposed algorithm enables flexible adaption to changing environments through continuous exploration during the learning process and, thus, contributes to a decentralized, automated voltage control in future power grids.
elib-URL des Eintrags: | https://elib.dlr.de/142116/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Adaptive Online-Learning Volt-Var Control for Smart Inverters Using Deep Reinforcement Learning | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 3 April 2021 | ||||||||||||||||||||||||
Erschienen in: | Energies | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 14 | ||||||||||||||||||||||||
DOI: | 10.3390/en14071991 | ||||||||||||||||||||||||
Seitenbereich: | Seite 1991 | ||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 1996-1073 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | deep reinforcement learning; low-voltage grid; reactive power; smart inverter; voltage control; volt-var-optimization | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie | ||||||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Energiesystemtechnologie | ||||||||||||||||||||||||
Hinterlegt von: | Geißendörfer, Dr. Stefan | ||||||||||||||||||||||||
Hinterlegt am: | 06 Mai 2021 09:06 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Mai 2022 23:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags