Garbasevschi, Oana M. and Estevam Schmiedt, Jacob and Verma, Trivik and Lefter, Iulia and Korthals Altes, Willem K. and Droin, Ariane and Schiricke, Björn and Wurm, Michael (2021) Spatial factors influencing building age prediction and implications for urban residential energy modelling. Computers, Environment and Urban Systems, 88, p. 101637. Elsevier. doi: 10.1016/j.compenvurbsys.2021.101637. ISSN 0198-9715.
PDF
- Published version
5MB |
Official URL: http://dx.doi.org/10.1016/j.compenvurbsys.2021.101637
Abstract
Urban energy consumption is expected to continuously increase alongside rapid urbanization. The building sector represents a key area for curbing the consumption trend and reducing energy-related emissions by adopting energy efficiency strategies. Building age acts as a proxy for building insulation properties and is an important parameter for energy models that facilitate decision making. The present study explores the potential of predicting residential building age at a large geographical scale from open spatial data sources in eight municipalities in the German federal state of North-Rhine Westphalia. The proposed framework combines building attributes with street and block metrics as classification features in a Random Forest model. Results show that the addition of urban fabric metrics improves the accuracy of building age prediction in specific training scenarios. Furthermore, the findings highlight the way in which the spatial disposition of training and test samples influences classification accuracy. Additionally, the paper investigates the impact of age misclassification on residential building heat demand estimation. The age classification model leads to reasonable errors in energy estimates, in various scenarios of training, which suggests that the proposed method is a promising addition to the urban energy modelling toolkit.
Item URL in elib: | https://elib.dlr.de/141993/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||||||
Title: | Spatial factors influencing building age prediction and implications for urban residential energy modelling | ||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||
Date: | 25 April 2021 | ||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | Computers, Environment and Urban Systems | ||||||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||||||
Volume: | 88 | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.compenvurbsys.2021.101637 | ||||||||||||||||||||||||||||||||||||
Page Range: | p. 101637 | ||||||||||||||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||||||||||||||
ISSN: | 0198-9715 | ||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||
Keywords: | Open data, Urban morphology, Spatial autocorrelation, Residential building age, Residential heat demand, Random forest | ||||||||||||||||||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||||||||||||||||||
HGF - Program: | Materials and Technologies for the Energy Transition | ||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | High-Temperature Thermal Technologies | ||||||||||||||||||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||||||||||||||||||
DLR - Program: | E SW - Solar and Wind Energy | ||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | E - Condition Monitoring, R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||||||||||
Location: | Jülich , Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Solar Research > Qualification German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||||||||||
Deposited By: | Garbasevschi, Oana Mihaela | ||||||||||||||||||||||||||||||||||||
Deposited On: | 10 May 2021 10:54 | ||||||||||||||||||||||||||||||||||||
Last Modified: | 23 Oct 2023 07:47 |
Repository Staff Only: item control page