Yang, Long und Gui-Song, Xia und Shengyang, Li und Yang, Wenzhi und Yang, Michael und Zhu, Xiao Xiang und Liangpei, Zhang und Deren, Li (2021) On Creating Benchmark Dataset for Aerial Image Interpretation: Reviews, Guidances and Million-AID. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, Seiten 4205-4230. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3070368. ISSN 1939-1404.
PDF
- Verlagsversion (veröffentlichte Fassung)
10MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9393553
Kurzfassung
The past years have witnessed great progress on remote sensing (RS) image interpretation and its wide applications. With RS images becoming more accessible than ever before, there is an increasing demand for the automatic interpretation of these images, where benchmark datasets are essential prerequisites for developing and testing intelligent interpretation algorithms. After reviewing existing benchmark datasets in the research community of RS image interpretation, this article discusses the problem of how to efficiently prepare a suitable benchmark dataset for RS image analysis. Specifically, we first analyze the current challenges of developing intelligent algorithms for RS image interpretation with bibliometric investigations. We then present the guidances on creating benchmark datasets in efficient manners. Following the presented guidances, we also provide an example on building datasets for RS image classification, i.e., Million-AID, a new large-scale benchmark dataset containing a million instances for RS scene classification. Several challenges and perspectives in RS image annotation are finally discussed to facilitate the research in benchmark dataset construction. We do hope this paper will provide the RS community an overall perspective on constructing large-scale and practical image datasets for further research, especially data-driven ones.
elib-URL des Eintrags: | https://elib.dlr.de/141687/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||
Titel: | On Creating Benchmark Dataset for Aerial Image Interpretation: Reviews, Guidances and Million-AID | ||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||
Datum: | April 2021 | ||||||||||||||||||||||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||
Band: | 14 | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1109/JSTARS.2021.3070368 | ||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 4205-4230 | ||||||||||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||
Stichwörter: | aerial image interpretation, satellite image interpretation, guidances, remote sensing annotation | ||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 07 Apr 2021 17:53 | ||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Aug 2021 17:08 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags