Zhu, Yue and Geiß, Christian and So, Emily and Jin, Ying (2021) Multitemporal Relearning With Convolutional LSTM Models for Land Use Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp. 3251-3265. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3055784. ISSN 1939-1404.
PDF
- Published version
10MB |
Official URL: https://ieeexplore.ieee.org/document/9343734
Abstract
In this article, we present a novel hybrid framework, which integrates spatial–temporal semantic segmentation with postclassification relearning, for multitemporal land use and land cover (LULC) classification based on very high resolution (VHR) satellite imagery. To efficiently obtain optimal multitemporal LULC classification maps, the hybrid framework utilizes a spatial–temporal semantic segmentation model to harness temporal dependency for extracting high-level spatial temporal features. In addition, the principle of postclassification relearning is adopted to efficiently optimize model output. Thereby, the initial outcome of a semantic segmentation model is provided to a subsequent model via an extended input space to guide the learning of discriminative feature representations in an end-to-endfashion. Last, object-based voting is coupled with postclassification relearning for coping with the high intraclass and low interclass variances. The framework was tested with two different postclassification relearning strategies (i.e., pixel-based relearning and object-based relearning) and three convolutional neural network models, i.e., UNet, a simple Convolutional LSTM, and a UNet Convolutional-LSTM. The experiments were conducted on two datasets with LULC labels that contain rich semantic information and variant building morphologic features (e.g., informal settlements). Each dataset contains four time steps from WorldView-2 and Quickbird imagery. The experimental results unambiguously underline that the proposed framework is efficient in terms of classifying complex LULC maps with multitemporal VHR images.
Item URL in elib: | https://elib.dlr.de/141669/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Multitemporal Relearning With Convolutional LSTM Models for Land Use Classification | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | February 2021 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2021.3055784 | ||||||||||||||||||||
Page Range: | pp. 3251-3265 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Classification postprocessing (CPP), convolutional neural networks (CNNs), deep learning (DL), multitemporal land use classification, relearning. | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||
Deposited By: | Geiß, Christian | ||||||||||||||||||||
Deposited On: | 19 Apr 2021 09:18 | ||||||||||||||||||||
Last Modified: | 19 Apr 2021 09:18 |
Repository Staff Only: item control page