elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multitemporal Relearning With Convolutional LSTM Models for Land Use Classification

Zhu, Yue und Geiß, Christian und So, Emily und Jin, Ying (2021) Multitemporal Relearning With Convolutional LSTM Models for Land Use Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, Seiten 3251-3265. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2021.3055784. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
10MB

Offizielle URL: https://ieeexplore.ieee.org/document/9343734

Kurzfassung

In this article, we present a novel hybrid framework, which integrates spatial–temporal semantic segmentation with postclassification relearning, for multitemporal land use and land cover (LULC) classification based on very high resolution (VHR) satellite imagery. To efficiently obtain optimal multitemporal LULC classification maps, the hybrid framework utilizes a spatial–temporal semantic segmentation model to harness temporal dependency for extracting high-level spatial temporal features. In addition, the principle of postclassification relearning is adopted to efficiently optimize model output. Thereby, the initial outcome of a semantic segmentation model is provided to a subsequent model via an extended input space to guide the learning of discriminative feature representations in an end-to-endfashion. Last, object-based voting is coupled with postclassification relearning for coping with the high intraclass and low interclass variances. The framework was tested with two different postclassification relearning strategies (i.e., pixel-based relearning and object-based relearning) and three convolutional neural network models, i.e., UNet, a simple Convolutional LSTM, and a UNet Convolutional-LSTM. The experiments were conducted on two datasets with LULC labels that contain rich semantic information and variant building morphologic features (e.g., informal settlements). Each dataset contains four time steps from WorldView-2 and Quickbird imagery. The experimental results unambiguously underline that the proposed framework is efficient in terms of classifying complex LULC maps with multitemporal VHR images.

elib-URL des Eintrags:https://elib.dlr.de/141669/
Dokumentart:Zeitschriftenbeitrag
Titel:Multitemporal Relearning With Convolutional LSTM Models for Land Use Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zhu, Yueyz591 (at) cam.ac.ukNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Geiß, Christianchristian.geiss (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
So, Emilyekms2 (at) cam.ac.ukNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jin, Yingyj242 (at) cam.ac.ukNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Februar 2021
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.1109/JSTARS.2021.3055784
Seitenbereich:Seiten 3251-3265
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Classification postprocessing (CPP), convolutional neural networks (CNNs), deep learning (DL), multitemporal land use classification, relearning.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Geiß, Christian
Hinterlegt am:19 Apr 2021 09:18
Letzte Änderung:19 Apr 2021 09:18

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.