Li, Jun und Wu, Zhaocong und Hu, Zhongwen und Jian, Canliang und Luo, Shaojie und Zhu, Xiao Xiang und Mou, LiChao und Molinier, Matthieu (2022) A Lightweight Deep Learning-based Cloud Detection Method for Sentinel-2A Imagery Fusing Multiscale Spectral and Spatial Features. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 5401219. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3069641. ISSN 0196-2892.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9397390
Kurzfassung
Clouds are a very important factor in the availability of optical remote sensing images. Recently, deep learning (DL)-based cloud detection methods have surpassed classical methods based on rules and physical models of clouds. However, most of these deep models are very large, which limits their applicability and explainability, while other models do not make use of the full spectral information in multispectral images, such as Sentinel-2. In this article, we propose a lightweight network for cloud detection, fusing multiscale spectral and spatial features (CD-FM3SFs) and tailored for processing all spectral bands in Sentinel-2A images. The proposed method consists of an encoder and a decoder. In the encoder, three input branches are designed to handle spectral bands at their native resolution and extract multiscale spectral features. Three novel components are designed: a mixed depthwise separable convolution (MDSC) and a shared and dilated residual block (SDRB) to extract multiscale spatial features, and a concatenation and sum (CS) operation to fuse multiscale spectral and spatial features with little calculation and no additional parameters. The decoder of CD-FM3SF outputs three cloud masks at the same resolution as input bands to enhance the supervision information of small, middle, and large clouds. To validate the performance of the proposed method, we manually labeled 36 Sentinel-2A scenes evenly distributed over mainland China. The experiment results demonstrate that CD-FM3SF outperforms traditional cloud detection methods and state-of-the-art DL-based methods in both accuracy and speed.
elib-URL des Eintrags: | https://elib.dlr.de/141573/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||
Titel: | A Lightweight Deep Learning-based Cloud Detection Method for Sentinel-2A Imagery Fusing Multiscale Spectral and Spatial Features | ||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||
Band: | 60 | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2021.3069641 | ||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seite 5401219 | ||||||||||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||
Stichwörter: | deep learning, cloud detection, Sentinel 2, multi-scale fusion | ||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung | ||||||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 26 Mär 2021 17:59 | ||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 01 Mär 2024 17:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags