elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Learning for Mapping the Amazon Rainforest with TanDEM-X

Bueso Bello, Jose Luis und Pulella, Andrea und Sica, Francescopaolo und Rizzoli, Paola (2021) Deep Learning for Mapping the Amazon Rainforest with TanDEM-X. In: International Geoscience and Remote Sensing Symposium (IGARSS). International Geoscience and Remote Sensing Symposium (IGARSS), 2021-07-12 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9554536.

[img] PDF
3MB

Kurzfassung

The TanDEM-X Synthetic Aperture Radar (SAR) system allows for the recording of the bistatic interferometric coherence, which adds additional information to the common amplitude images acquired by monostatic SAR systems. More concretely, the volume decorrelation factor, which influences the interferometric coherence, has been proved to be a reliable indicator of vegetated areas and was exploited in [1] to generate the global TanDEM-X Forest/Non-Forest Map, based on a supervised clustering algorithm. In this work, we investigate ad-hoc training strategies to extent the Convolutional Neural Network (CNN) presented in [2] for mapping forests and monitoring the extend of the Amazonas using TanDEM-X. By applying the proposed method on single TanDEM-X images, we achieved a significant performance improvement with respect to the clustering approach, with an f-score increase of 0.13, using as reference a forest map of 2010 based on Landsat data. The improvement in the forest classification makes it possible to skip the weighted mosaicking of overlapping images used in the clustering approach for achieving a good final accuracy. In this way, we were able to generate three time-tagged mosaics over the Amazon rainforest, by utilizing the nominal TanDEM-X acquisitions between 2011 and 2017. In the final paper, we will present more consolidated results, including the validation and comparison of the generated mosaics, as well as change detection investigations, aimed at showing the capabilities of Deep Learning approaches for forest mapping and monitoring with bistatic TanDEM-X images.

elib-URL des Eintrags:https://elib.dlr.de/141565/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Deep Learning for Mapping the Amazon Rainforest with TanDEM-X
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bueso Bello, Jose LuisNICHT SPEZIFIZIERThttps://orcid.org/0000-0003-3464-2186NICHT SPEZIFIZIERT
Pulella, AndreaNICHT SPEZIFIZIERThttps://orcid.org/0000-0001-6295-617XNICHT SPEZIFIZIERT
Sica, FrancescopaoloNICHT SPEZIFIZIERThttps://orcid.org/0000-0003-1593-1492NICHT SPEZIFIZIERT
Rizzoli, PaolaNICHT SPEZIFIZIERThttps://orcid.org/0000-0001-9118-2732NICHT SPEZIFIZIERT
Datum:Juli 2021
Erschienen in:International Geoscience and Remote Sensing Symposium (IGARSS)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/IGARSS47720.2021.9554536
Status:veröffentlicht
Stichwörter:Synthetic Aperture Radar, TanDEM-X, Amazon, forest mapping, deforestation monitoring, deep learning, convolutional neural network
Veranstaltungstitel:International Geoscience and Remote Sensing Symposium (IGARSS)
Veranstaltungsort:Brussels, Belgium
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:12 Juli 2021
Veranstaltungsende:16 Juli 2021
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt TanDEM-X (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme
Hinterlegt von: Bueso Bello, Jose Luis
Hinterlegt am:26 Mär 2021 16:36
Letzte Änderung:24 Apr 2024 20:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.