Martin del Campo Becerra, Gustavo Daniel und Serafín García, Sergio Alejandro und Reigber, Andreas und Ortega Cisneros, Susana (2021) Statistical Regularization as an Alternative to Model Order Selection. In: International Geoscience and Remote Sensing Symposium (IGARSS). IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2021-07-11 - 2021-07-16, Brussels, Belgium. doi: 10.1109/IGARSS47720.2021.9553314.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The correct functioning of parametric focusing techniques [e.g., MUltiple SIgnal Classification (MUSIC)] require a proper selection of the model order. For such aim, a methodology based on the Kullback-Leibler information criterion is commonly employed. These methods perform well due to its propensity to choose relatively large model orders, which tend to retrieve good-fitted responses when the data generating mechanism is more complex than the models used to fit. However, some solutions can be misleading, since only the most proper model order (i.e., the actual number of targets) guaranties best performance. As an alternative, this work suggests employing statistical regularization instead of model order selection (MOS) approaches. First, a model with large order is chosen to perform focusing via parametric methods; subsequently, statistical regularization is applied, seeking to attain good-fitted solutions. To demonstrate the capabilities of the addressed novel strategy, Synthetic Aperture Radar (SAR) Tomography (TomoSAR) is considered as application.
elib-URL des Eintrags: | https://elib.dlr.de/141467/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Statistical Regularization as an Alternative to Model Order Selection | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9553314 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Maximum-likelihood, Model Order Selection (MOS), MUltiple SIgnal Classification (MUSIC), Synthetic Aperture Radar (SAR), Tomography. | ||||||||||||||||||||
Veranstaltungstitel: | IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Veranstaltungsort: | Brussels, Belgium | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Flugzeug-SAR | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme | ||||||||||||||||||||
Hinterlegt von: | Martin del Campo Becerra, Gustavo | ||||||||||||||||||||
Hinterlegt am: | 23 Mär 2021 12:31 | ||||||||||||||||||||
Letzte Änderung: | 09 Jul 2024 13:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags