elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry-climate model with mixed-layer ocean

Stecher, Laura und Winterstein, Franziska und Dameris, Martin und Jöckel, Patrick und Ponater, Michael und Kunze, Markus (2021) Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry-climate model with mixed-layer ocean. Atmospheric Chemistry and Physics (ACP), 21 (2), Seiten 731-754. Copernicus Publications. doi: 10.5194/acp-21-731-2021. ISSN 1680-7316.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
16MB
[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
13MB

Offizielle URL: https://acp.copernicus.org/articles/21/731/2021/

Kurzfassung

In a previous study the quasi-instantaneous chemical impacts (rapid adjustments) of strongly enhanced methane (CH4) mixing ratios have been analysed. However, to quantify the influence of the respective slow climate feedbacks on the chemical composition it is necessary to include the radiation-driven temperature feedback. Therefore, we perform sensitivity simulations with doubled and quintupled present-day (year 2010) CH4 mixing ratios with the chemistry-climate model EMAC (European Centre for Medium-Range Weather Forecasts, Hamburg version - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry) and include in a novel set-up a mixed-layer ocean model to account for tropospheric warming. Strong increases in CH4 lead to a reduction in the hydroxyl radical in the troposphere, thereby extending the CH4 lifetime. Slow climate feedbacks counteract this reduction in the hydroxyl radical through increases in tropospheric water vapour and ozone, thereby dampening the extension of CH4 lifetime in comparison with the quasi-instantaneous response. Changes in the stratospheric circulation evolve clearly with the warming of the troposphere. The Brewer-Dobson circulation strengthens, affecting the response of trace gases, such as ozone, water vapour and CH4 in the stratosphere, and also causing stratospheric temperature changes. In the middle and upper stratosphere, the increase in stratospheric water vapour is reduced with respect to the quasi-instantaneous response. We find that this difference cannot be explained by the response of the cold point and the associated water vapour entry values but by a weaker strengthening of the in situ source of water vapour through CH4 oxidation. However, in the lower stratosphere water vapour increases more strongly when tropospheric warming is accounted for, enlarging its overall radiative impact. The response of the stratosphere adjusted temperatures driven by slow climate feedbacks is dominated by these increases in stratospheric water vapour as well as strongly decreased ozone mixing ratios above the tropical tropopause, which result from enhanced tropical upwelling. While rapid radiative adjustments from ozone and stratospheric water vapour make an essential contribution to the effective CH4 radiative forcing, the radiative impact of the respective slow feedbacks is rather moderate. In line with this, the climate sensitivity from CH4 changes in this chemistry-climate model set-up is not significantly different from the climate sensitivity in carbon-dioxide-driven simulations, provided that the CH4 effective radiative forcing includes the rapid adjustments from ozone and stratospheric water vapour changes.

elib-URL des Eintrags:https://elib.dlr.de/141203/
Dokumentart:Zeitschriftenbeitrag
Titel:Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry-climate model with mixed-layer ocean
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Stecher, LauraDLR, IPANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Winterstein, FranziskaDLR, IPAhttps://orcid.org/0000-0002-2406-4936NICHT SPEZIFIZIERT
Dameris, MartinDLR, IPANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jöckel, PatrickDLR, IPAhttps://orcid.org/0000-0002-8964-1394NICHT SPEZIFIZIERT
Ponater, MichaelDLR, IPAhttps://orcid.org/0000-0002-9771-4733NICHT SPEZIFIZIERT
Kunze, MarkusFU Berlin MeteorologieNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:19 Januar 2021
Erschienen in:Atmospheric Chemistry and Physics (ACP)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:21
DOI:10.5194/acp-21-731-2021
Seitenbereich:Seiten 731-754
Verlag:Copernicus Publications
ISSN:1680-7316
Status:veröffentlicht
Stichwörter:methane, radiative impact, chemistry-climate interaction, stratospheric ozone, stratospheric water vapour, slow climate feedbacks
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - Transport und Klima (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystem-Modellierung
Hinterlegt von: Stecher, Laura
Hinterlegt am:03 Mär 2021 11:17
Letzte Änderung:24 Mai 2022 23:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.