Albu-Schäffer, Alin Olimpiu und Lakatos, Dominic und Stramigioli, Stefano (2021) Strict Nonlinear Normal Modes of Systems Characterized by Scalar Functions on Riemannian Manifolds. IEEE Robotics and Automation Letters. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LRA.2021.3061303. ISSN 2377-3766.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
For the study of highly nonlinear, conservative dynamic systems, finding special periodic solutions which can be seen as generalization of the well-known normal modes of linear systems is very attractive. However, the study of lowdimensional invariant manifolds in the form of nonlinear normal modes is rather a niche topic, treated mainly in the context of structural mechanics for systems with Euclidean metrics, i.e., for point masses connected by nonlinear springs. In our previous research we recognized, however, that a very rich structure of periodic and low-dimensional solutions exist also within nonlinear systems such as elastic multi-body systems encountered in the biomechanics of humans and animals or of humanoid and quadruped robots, which are characterized by a non-constant metric tensor. This paper briefly discusses different generalizations of linear oscillation modes to nonlinear systems and proposes a definition of strict nonlinear normal modes, which matches most of the relevant properties of the linear modes. The main contributions are a theorem providing necessary and sufficient conditions for the existence of strict oscillation modes on systems endowed with a Riemannian metric and a potential field as well as a constructive example of designing such modes in the case of an elastic double pendulum.
elib-URL des Eintrags: | https://elib.dlr.de/141122/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Strict Nonlinear Normal Modes of Systems Characterized by Scalar Functions on Riemannian Manifolds | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 23 Februar 2021 | ||||||||||||||||
Erschienen in: | IEEE Robotics and Automation Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/LRA.2021.3061303 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 2377-3766 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Dynamics, Flexible Robotics, Modeling, Control, and Learning for Soft Robots | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - On-Orbit Servicing [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||
Hinterlegt von: | Beinhofer, Gabriele | ||||||||||||||||
Hinterlegt am: | 28 Apr 2021 14:31 | ||||||||||||||||
Letzte Änderung: | 11 Sep 2023 13:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags