Steiniger, Yannik and Kraus, Dieter and Meisen, Tobias (2021) Generating Synthetic Sidescan Sonar Snippets Using Transfer-Learning in Generative Adversarial Networks. Journal of Marine Science and Engineering, 9 (3). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/jmse9030239. ISSN 2077-1312.
![]() |
PDF
- Published version
1MB |
Official URL: https://www.mdpi.com/2077-1312/9/3/239
Abstract
The training of a deep learning model requires a large amount of data. In case of sidescan sonar images, the number of snippets from objects of interest is limited. Generative adversarial networks (GAN) have shown to be able to generate photo-realistic images. Hence, we use a GAN to augment a baseline sidescan image dataset with synthetic snippets. Although the training of a GAN with few data samples is likely to cause mode collapse, a combination of pre-training using simple simulated images and fine-tuning with real data reduces this problem. However, for sonar data, we show that this approach of transfer-learning a GAN is sensitive to the pre-training step, meaning that the vanishing of the gradients of the GAN's discriminator becomes a critical problem. Here, we demonstrate how to overcome this problem, and thus how to apply transfer-learning to GANs for generating synthetic sidescan snippets in a more robust way. Additionally, in order to further investigate the GAN's ability to augment a sidescan image dataset, the generated images are analyzed in the image and the frequency domain. The work helps other researchers in the field of sonar image processing to augment their dataset with additional synthetic samples.
Item URL in elib: | https://elib.dlr.de/141105/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Generating Synthetic Sidescan Sonar Snippets Using Transfer-Learning in Generative Adversarial Networks | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 24 February 2021 | ||||||||||||||||
Journal or Publication Title: | Journal of Marine Science and Engineering | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 9 | ||||||||||||||||
DOI: | 10.3390/jmse9030239 | ||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 2077-1312 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | deep learning; generative adversarial networks; transfer-learning; sidescan sonar; synthetic sonar images | ||||||||||||||||
HGF - Research field: | other | ||||||||||||||||
HGF - Program: | other | ||||||||||||||||
HGF - Program Themes: | other | ||||||||||||||||
DLR - Research area: | no assignment | ||||||||||||||||
DLR - Program: | no assignment | ||||||||||||||||
DLR - Research theme (Project): | no assignment | ||||||||||||||||
Location: | Bremerhaven | ||||||||||||||||
Institutes and Institutions: | Institute for the Protection of Maritime Infrastructures > Maritime Security Technologies | ||||||||||||||||
Deposited By: | Steiniger, Yannik | ||||||||||||||||
Deposited On: | 25 Feb 2021 09:45 | ||||||||||||||||
Last Modified: | 24 May 2022 23:46 |
Repository Staff Only: item control page