Lin, Jianzhe und Mou, LiChao und Yu, Tianze und Zhu, Xiao Xiang und Wang, Z. Jane (2020) Dual adversarial network for unsupervised ground/satellite-to-aerial scene adaptation. In: 28th ACM International Conference on Multimedia, MM 2020, Seiten 10-18. ACM. ACM International Conference on Multimedia (ACM MM) 2020, 2020-10-12 - 2020-10-16, Seattle, WA, USA. doi: 10.1145/3394171.3413893. ISBN 978-1-4503-7988-5.
PDF
6MB |
Offizielle URL: https://dl.acm.org/doi/abs/10.1145/3394171.3413893
Kurzfassung
Recent domain adaptation work tends to obtain a uniformed representation in an adversarial manner through joint learning of the domain discriminator and feature generator. However, this domain adversarial approach could render sub-optimal performances due to two potential reasons: First, it might fail to consider the task at hand when matching the distributions between the domains. Second, it generally treats the source and target domain data in the same way. In our opinion, the source domain data which serves the feature adaption purpose should be supplementary, whereas the target domain data mainly needs to consider the task-specific classifier. Motivated by this, we propose a dual adversarial network for domain adaptation, where two adversarial learning processes are conducted iteratively, in correspondence with the feature adaptation and the classification task respectively. The efficacy of the proposed method is first demonstrated on Visual Domain Adaptation Challenge (VisDA) 2017 challenge, and then on two newly proposed Ground/Satellite-to-Aerial Scene adaptation tasks. For the proposed tasks, the data for the same scene is collected not only by the traditional camera on the ground, but also by satellite from the out space and unmanned aerial vehicle (UAV) at the high-altitude. Since the semantic gap between the ground/satellite scene and the aerial scene is much larger than that between ground scenes, the newly proposed tasks are more challenging than traditional domain adaptation tasks. The datasets/codes can be found at https://github.com/jianzhelin/DuAN.
elib-URL des Eintrags: | https://elib.dlr.de/141040/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Dual adversarial network for unsupervised ground/satellite-to-aerial scene adaptation | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Oktober 2020 | ||||||||||||||||||||||||
Erschienen in: | 28th ACM International Conference on Multimedia, MM 2020 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1145/3394171.3413893 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 10-18 | ||||||||||||||||||||||||
Verlag: | ACM | ||||||||||||||||||||||||
ISBN: | 978-1-4503-7988-5 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | unsupervised ground, satellite, aerial scene adaptation | ||||||||||||||||||||||||
Veranstaltungstitel: | ACM International Conference on Multimedia (ACM MM) 2020 | ||||||||||||||||||||||||
Veranstaltungsort: | Seattle, WA, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 12 Oktober 2020 | ||||||||||||||||||||||||
Veranstaltungsende: | 16 Oktober 2020 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||
Hinterlegt am: | 19 Feb 2021 18:31 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags