Chaudhuri, Ushashi und Banerjee, Biplab und Bhattacharya, Avik und Datcu, Mihai (2020) CMIR-NET: A deep learning based model for cross-modal retrieval in remote sensing. Pattern Recognition Letters, 131, Seiten 456-462. Elsevier. doi: 10.1016/j.patrec.2020.02.006. ISSN 0167-8655.
PDF
- Preprintversion (eingereichte Entwurfsversion)
2MB |
Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0167865520300453
Kurzfassung
We address the problem of cross-modal information retrieval in the domain of remote sensing. In particular, we are interested in two application scenarios: i) cross-modal retrieval between panchromatic (PAN) and multi-spectral imagery, and ii) multi-label image retrieval between very high resolution (VHR) images and speech based label annotations. Notice that these multi-modal retrieval scenarios are more challenging than the traditional uni-modal retrieval approaches given the inherent differences in distributions between the modalities. However, with the growing availability of multi-source remote sensing data and the scarcity of enough semantic annotations, the task of multi-modal retrieval has recently become extremely important. In this regard, we propose a novel deep neural network based architecture which is considered to learn a discriminative shared feature space for all the input modalities, suitable for semantically coherent information retrieval. Extensive experiments are carried out on the benchmark large-scale PAN - multi-spectral DSRSID dataset and the multi-label UC-Merced dataset. Together with the Merced dataset, we generate a corpus of speech signals corresponding to the labels. Superior performance with respect to the current state-of-the-art is observed in all the cases.
elib-URL des Eintrags: | https://elib.dlr.de/140996/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | CMIR-NET: A deep learning based model for cross-modal retrieval in remote sensing | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2020 | ||||||||||||||||||||
Erschienen in: | Pattern Recognition Letters | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 131 | ||||||||||||||||||||
DOI: | 10.1016/j.patrec.2020.02.006 | ||||||||||||||||||||
Seitenbereich: | Seiten 456-462 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 0167-8655 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | image and video processing, deep learning, remote sensing, cross-modal retrieval | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Hinterlegt am: | 19 Feb 2021 18:05 | ||||||||||||||||||||
Letzte Änderung: | 19 Feb 2021 18:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags