Liu, Lina und Mou, LiChao und Zhu, Xiao Xiang und Mandal, Mrinal (2020) Automatic Skin Lesion Classification Based on Mid-level Feature Learning, Computerized Medical Imaging and Graphics. Computerized Medical Imaging and Graphics, 84, Seite 101765. Elsevier. doi: 10.1016/j.compmedimag.2020.101765. ISSN 0895-6111.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0895611120300689
Kurzfassung
Dermoscopic images are widely used for melanoma detection. Many existing works based on traditional classification methods and deep learning models have been proposed for automatic skin lesion analysis. The traditional classification methods use hand-crafted features as input. However, due to the strong visual similarity between different classes of skin lesions and complex skin conditions, the hand-crafted features are not discriminative enough and fail in many cases. Recently, deep convolutional neural networks (CNN) have gained popularity since they can automatically learn optimal features during the training phase. Different from existing works, a novel mid-level feature learning method for skin lesion classification task is proposed in this paper. In this method, skin lesion segmentation is first performed to detect the regions of interest (ROI) of skin lesion images. Next, pretrained neural networks including ResNet and DenseNet are used as the feature extractors for the ROI images. Instead of using the extracted features directly as input of classifiers, the proposed method obtains the mid-level feature representations by utilizing the relationships among different image samples based on distance metric learning. The learned feature representation is a soft discriminative descriptor, having more tolerance to the hard samples and hence is more robust to the large intra-class difference and inter-class similarity. Experimental results demonstrate advantages of the proposed mid-level features, and the proposed method obtains state-of-the-art performance compared with the existing CNN based methods.
elib-URL des Eintrags: | https://elib.dlr.de/140925/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Automatic Skin Lesion Classification Based on Mid-level Feature Learning, Computerized Medical Imaging and Graphics | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | September 2020 | ||||||||||||||||||||
Erschienen in: | Computerized Medical Imaging and Graphics | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 84 | ||||||||||||||||||||
DOI: | 10.1016/j.compmedimag.2020.101765 | ||||||||||||||||||||
Seitenbereich: | Seite 101765 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 0895-6111 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Skin lesion analysis, Medical image analysis, Feature learning, Metric learning | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Hinterlegt am: | 12 Feb 2021 18:10 | ||||||||||||||||||||
Letzte Änderung: | 12 Feb 2021 18:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags