Hua, Yuansheng und Marcos, Diego und Mou, LiChao und Zhu, Xiao Xiang und Tuia, Devis (2022) Semantic segmentation of remote sensing images with sparse annotations. IEEE Geoscience and Remote Sensing Letters, 19, Seite 8006305. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2021.3051053. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9335495
Kurzfassung
Training convolutional neural networks (CNNs) for very high-resolution images requires a large quantity of high-quality pixel-level annotations, which is extremelylabor-intensive and time-consuming to produce. Moreover, professional photograph interpreters might have to be involved in guaranteeing the correctness of annotations. To alleviate such a burden, we propose a framework for semantic segmentation of aerial images based on incomplete annotations, where annotatorsare asked to label a few pixels with easy-to-draw scribbles. To exploit these sparse scribbled annotations, we propose theFEature and Spatial relaTional regulArization (FESTA) method to complement the supervised task with an unsupervised learn-ing signal that accounts for neighborhood structures both inspatial and feature terms. For the evaluation of our frame-work, we perform experiments on two remote sensing image segmentation data sets involving aerial and satellite imagery, respectively. Experimental results demonstrate that the exploitation of sparse annotations can significantly reduce labeling costs, while the proposed method can help improve the performance of semantic segmentation when training on such annotations. The sparse labels and codes are publicly available for reproducibility purposes.
elib-URL des Eintrags: | https://elib.dlr.de/140911/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Semantic segmentation of remote sensing images with sparse annotations | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Januar 2022 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 19 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2021.3051053 | ||||||||||||||||||||||||
Seitenbereich: | Seite 8006305 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Aerial image, convolutional neural networks (CNNs), semantic segmentation, semisupervised learning, sparse scribbled annotation | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||
Hinterlegt am: | 12 Feb 2021 17:41 | ||||||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 13:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags