Lin, Jianzhe und Yu, Tianze und Mou, LiChao und Zhu, Xiao Xiang und Ward, Rabab Kreidieh und Wang, Z. Jane (2021) Unifying Top-down Views by Task-Specific Domain Adaptation. IEEE Transactions on Geoscience and Remote Sensing, 59 (6), Seiten 4689-4702. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3022608. ISSN 0196-2892.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9210589
Kurzfassung
In this article, we aim to learn a unified representation of images from satellite/aerial/ground views by exploring their underlying correlations. Inspired by recent advances in domain adaptation (DA), we propose a novel task-specific DA method for this purpose. Different from traditional DA methods, this proposed method not only applies task-specific classifiers1 but also introduces domain-specific tasks for different domains during the adaptation process. The experiments are conducted on two newly proposed ground-/satellite-to-aerial scene adaptation (GSSA) data sets. Since the semantic gap between the ground/satellite scenes and the aerial scenes is much larger than that between ground scenes, the DA task between these scenes is more challenging than traditional DA tasks. On GSSA data sets, we not only demonstrate the proposed unsupervised DA method but also explore the few-shot DA in the discussion section. The proposed method is easy to implement, and our method substantially outperforms the state-of-the-art methods on the studied data sets. We hope that the proposed method for the novel GSSA data sets can be a good baseline for future researchers. The related data sets/codes will be available online.
elib-URL des Eintrags: | https://elib.dlr.de/140910/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Unifying Top-down Views by Task-Specific Domain Adaptation | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Juni 2021 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 59 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2020.3022608 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 4689-4702 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Intelligent transportation systems-Unmanned vehicles, machine learning-predictive models | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||||||
Hinterlegt am: | 12 Feb 2021 17:33 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Aug 2021 16:37 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags