Saha, Sudipan und Mou, LiChao und Zhu, Xiao Xiang und Bovolo, Francesca und Bruzzone, Lorenzo (2021) Semisupervised change detection using Graph Convolutional Network. IEEE Geoscience and Remote Sensing Letters, 18 (4), Seiten 607-611. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2020.2985340. ISSN 1545-598X.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9069898
Kurzfassung
Most change detection (CD) methods are unsupervised as collecting substantial multitemporal training data is challenging. Unsupervised CD methods are driven by heuristics and lack the capability to learn from data. However, in many real-world applications, it is possible to collect a small amount of labeled data scattered across the analyzed scene. Such a few scattered labeled samples in the pool of unlabeled samples can be effectively handled by graph convolutional network (GCN) that has recently shown good performance in semisupervised single-date analysis, to improve change detection performance. Based on this, we propose a semisupervised CD method that encodes multitemporal images as a graph via multiscale parcel segmentation that effectively captures the spatial and spectral aspects of the multitemporal images. The graph is further processed through GCN to learn a multitemporal model. Information from the labeled parcels is propagated to the unlabeled ones over training iterations. By exploiting the homogeneity of the parcels, the model is used to infer the label at a pixel level. To show the effectiveness of the proposed method, we tested it on a multitemporal Very High spatial Resolution (VHR) data set acquired by Pleiades sensor over Trento, Italy.
elib-URL des Eintrags: | https://elib.dlr.de/140906/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Semisupervised change detection using Graph Convolutional Network | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | April 2021 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 18 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2020.2985340 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 607-611 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | change detection, semi-supervised, graph convolutional network | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||
Hinterlegt am: | 12 Feb 2021 16:52 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Aug 2021 16:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags