Wiedemann, Thomas und Vlaicu, Cosmin und Josifovski, Josip und Viseras Ruiz, Alberto (2021) Robotic Information Gathering with Reinforcement Learning assisted by Domain Knowledge: an Application to Gas Source Localization. IEEE Access. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/ACCESS.2021.3052024. ISSN 2169-3536.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Kurzfassung
Gas source localization tackles the problem of finding leakages of hazardous substances such as poisonous gases or radiation in the event of a disaster. In order to avoid threats for human operators, autonomous robots dispatched for localizing potential gas sources are preferable. This work investigates a Reinforcement Learning framework that allows a robotic agent to learn how to localize gas sources. We propose a solution that assists Reinforcement Learning with existing domain knowledge based on a model of the gas dispersion process. In particular, we incorporate a priori domain knowledge by designing appropriate rewards and observation inputs for the Reinforcement Learning algorithm. We show that a robot trained with our proposed method outperforms state-of-the-art gas source localization strategies, as well as robots that are trained without additional domain knowledge. Furthermore, the framework developed in this work can also be generalized to a large variety of information gathering tasks.
elib-URL des Eintrags: | https://elib.dlr.de/140623/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Robotic Information Gathering with Reinforcement Learning assisted by Domain Knowledge: an Application to Gas Source Localization | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 18 Januar 2021 | ||||||||||||||||||||
Erschienen in: | IEEE Access | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/ACCESS.2021.3052024 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 2169-3536 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | gas source localization, information gathering, reinforcement learning, mobile robot, deep learning | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Navigation 4.0 (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||
Hinterlegt von: | Wiedemann, Thomas | ||||||||||||||||||||
Hinterlegt am: | 02 Feb 2021 16:18 | ||||||||||||||||||||
Letzte Änderung: | 24 Mai 2022 23:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags