DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Rotorcraft Flight Simulation Model Fidelity Improvement and Assessment

Tischler, M. B. and White, Mark D. and Jones, Michael and Scepanovic, Pavle and Seher-Weiß, Susanne and Myrand-Lapierre, Vincent and Nadeau-Beaulieu, Michel and Richard, Sylvain and Ragazzi, Andrea and D’Agosto, Stefano and He, Chengjian and Lehman, Rhys and Miller, David and Xin, Hong and Gubbels, Arthur and Hui, Kenneth and Taghizad, A. and Tobias, Eric and Greiser, Steffen and Pavel, Marilena and Stroosma, Olaf and Yavrucuk, Ilkay and Padfield, Gareth D. and Cameron, Neil and Prasad, J.V.R. and Guner, Feyyaz and Juhasz, Ondrej and Horn, Josef and Soong, Jonathan and Nadell, Samuel and Lee, Olivia (2021) Rotorcraft Flight Simulation Model Fidelity Improvement and Assessment. Other. STO-TR-AVT-296-NU, 442 S. North Atlantic Treaty Organization. doi: 10.14339/STO-TR-AVT-296-NU.

Full text not available from this repository.

Official URL: https://www.sto.nato.int/publications/STO%20Technical%20Reports/Forms/Technical%20Report%20Document%20Set/docsethomepage.aspx?ID=4885&FolderCTID=0x0120D5200078F9E87043356C409A0D30823AFA16F6010066D541ED10A62C40B2AB0FEBE9841A61&List=92d5819c-e6ec-4241-aa4e-


Rotorcraft flight dynamics simulation models require high levels of fidelity to be suitable as prime items in support of life cycle practices, particularly vehicle and control design and development, and system and trainer certification. On the civil side, both the FAA (US) and EASA (Europe) have documented criteria (metrics and practices) for assessing model and simulator fidelity as compared to flight-test data, although these have not been updated for several decades. On the military side, the related practices in NATO nations are not harmonised and often only developed for specific applications. Methods to update the models for improved fidelity are mostly ad-hoc and lack a rational and methodical approach. Modern rotorcraft system identification (SID) and inverse simulation methods have been developed in recent years that provide new approaches well suited to pilot-in-the-loop fidelity assessment and systematic techniques for updating simulation models to achieve the needed level of fidelity. To coordinate efforts and improve the knowledge in this area, STO Applied Vehicle Technology Panel Research Task Group (STO AVT-296 RTG) was constituted to evaluate update methods used by member nations to find best practices and suitability for different applications including advanced rotorcraft configurations. This report presents the findings of the AVT-296 RTG. An overview of previous rotorcraft simulation fidelity Working Groups is presented, followed by a review of the metrics that have been used in previous studies to quantify the fidelity of a flight model or the overall perceptual fidelity of a simulator. The theoretical foundations of the seven different update methods and a description of the eight flight databases (Bell 412, UH-60, Iris+, EC135, CH-47, AW139, AW109, and X2, provided by the National Research Council of Canada, US Army, Airbus Helicopters, Boeing, Leonardo Helicopter Division, and Sikorsky) used by the RTG is presented. Both time- and frequency-domain fidelity assessment methods are considered, including those in current use by simulator qualification authorities and those used in the research community. Case studies are used to show the application, utility, and limitations of the update and assessment methods to the flight-test data. The work of the RTG has shown that time- and frequency-domain SID based metrics are suitable for use for assessing the model fidelity across a wide range of rotorcraft configurations. Gain and time delay update methods work well for well-developed flight dynamics models and can be used for flight control system design, but do not provide physical insights into the sources of errors in a model. Deriving stability and control derivatives from flight-test data and nonlinear simulation models using SID provides insight into the missing dynamics of the simulation model, which can subsequently be updated using additional forces and moments to significantly improve the fidelity of the model and can be used to update models for flight simulation training application methods. Reduced order model and physics-based correction methods provide large benefits when extrapolating to other flight conditions but does require detailed flight-test data. SID can quickly provide accurate point models, if detailed flight-test data is available, which can be "stitched" together to produce models suitable for real-time piloted simulation and control design applications. However, the dependency on flight-test data means that this method is not suitable for early aircraft development activities. This documentation of rotorcraft simulation fidelity assessment and model update strategies will benefit NATO nations by allowing for common, agreed-upon best practices and recommendations, ensuring each country's flight dynamics and simulation models are of the highest calibre possible. The collaboration between industry, academia, and government laboratories has been key to the success of this RTG; this cooperation model should be adopted in future research activities. As industries strive to achieve greater efficiency and safety in their products, the fidelity of simulation should match commercial aspirations to ensure that the "right first time" ethos is fully embedded into industrial best practices. Militaries will be able to use the methods and metrics presented to set criteria that will underpin the use of modelling and simulation in certification to accelerate development and acquisition and reduce the cost of new aircraft systems, e.g. advanced high-speed rotorcraft and legacy system upgrades. The criteria may also set standards for training devices used to support the expansion of synthetic environments for training to offset the high costs of flight hours. This RTG has identified that current flight training simulator standards could be updated to use the flight model and perceptual fidelity metrics presented in this report to ensure that models are not "over-tuned" and a more rigorous method of subjective simulator assessment is adopted.

Item URL in elib:https://elib.dlr.de/140518/
Document Type:Monograph (Other)
Title:Rotorcraft Flight Simulation Model Fidelity Improvement and Assessment
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
Tischler, M. B.U.S. Army, Ames Research Center, Moffet FieldUNSPECIFIED
White, Mark D.University of LiverpoolUNSPECIFIED
Jones, MichaelMichael.Jones (at) dlr.deUNSPECIFIED
Scepanovic, PavlePavle.Scepanovic (at) dlr.deUNSPECIFIED
Seher-Weiß, SusanneSusanne.Seher-Weiss (at) dlr.deUNSPECIFIED
Myrand-Lapierre, VincentCAE, Global EngineeringUNSPECIFIED
Nadeau-Beaulieu, MichelCAEUNSPECIFIED
Richard, SylvainThales, FranceUNSPECIFIED
Ragazzi, AndreaLeonardo HelicoptersUNSPECIFIED
D’Agosto, StefanoLeonardo HelicoptersUNSPECIFIED
He, Chengjianhe (at) flightlab.comUNSPECIFIED
Lehman, RhysRhys.Lehmann (at) dst.defence.gov.auUNSPECIFIED
Miller, DavidBoeing, USAUNSPECIFIED
Xin, HongSikorskyUNSPECIFIED
Gubbels, ArthurNRC CanadaUNSPECIFIED
Hui, KennethNRC Flight Research LaboratoryUNSPECIFIED
Tobias, EricArmy Technology Development Directorate, USAUNSPECIFIED
Greiser, Steffensteffen.greiser (at) hs-osnabrueck.deUNSPECIFIED
Pavel, MarilenaTU DelftUNSPECIFIED
Stroosma, OlafTU DelftUNSPECIFIED
Yavrucuk, Ilkayyavrucuk (at) metu.edu.trUNSPECIFIED
Padfield, Gareth D.University of LiverpoolUNSPECIFIED
Cameron, NeilUniversity of LiverpoolUNSPECIFIED
Prasad, J.V.R.School of Aerospace Engineering, Atlanta, usUNSPECIFIED
Guner, FeyyazGeorgia Institute of Technology, USAUNSPECIFIED
Juhasz, OndrejNaval Academy, USAUNSPECIFIED
Horn, JosefPennsylvania State University, USAUNSPECIFIED
Soong, JonathanUniversities Space Research Association, USAUNSPECIFIED
Nadell, SamuelUniversities Space Research Association, USAUNSPECIFIED
Lee, OliviaSan Jose State University, USAUNSPECIFIED
Date:5 May 2021
Refereed publication:No
Open Access:Yes
Gold Open Access:No
In ISI Web of Science:No
DOI :10.14339/STO-TR-AVT-296-NU
Number of Pages:442
Publisher:North Atlantic Treaty Organization
Series Name:STO Technical Report
Keywords:rotorcraft simulation, fidelity assessment, fidelity improvement
Institution:North Atlantic Treaty Organization (NATO)
Department:Science and Technology Organization (STO)
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:rotorcraft
DLR - Research area:Aeronautics
DLR - Program:L RR - Rotorcraft Research
DLR - Research theme (Project):L - The Smart Rotorcraft (old)
Location: Braunschweig
Institutes and Institutions:Institute of Flight Systems > Rotorcraft
Deposited By: Seher-Weiß, Susanne
Deposited On:04 Mar 2021 09:00
Last Modified:08 Jun 2021 13:27

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.