elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Predictive Approaches for Resource Provisioning in Distributed Systems

Borkowski, Michael (2020) Predictive Approaches for Resource Provisioning in Distributed Systems. Dissertation, TU Wien.

[img] PDF
3MB

Offizielle URL: https://repositum.tuwien.at/handle/20.500.12708/15472

Kurzfassung

Modern distributed systems, such as cloud computing infrastructures or data stream processing engines, perform resource provisioning tasks such as resource allocation, task scheduling, or scaling. This decision-making substantially influences the systems' performance, and therefore, the manner of reaching these decisions is crucial to the systems' operation with regard to cost efficiency, performance, reliability, and adherence to service level agreements. Currently, many approaches to resource provisioning in distributed systems are reactive, i.e., they measure the systems' state, analyze it, and perform necessary actions. The main downside of reactive approaches is that effectively, such systems perform resource provisioning based only on past observations. In a highly dynamic environment with rapidly changing demands for computational resources, this can lead to delayed reactions, which increase cost, degrade performance, and reduce reliability. This thesis proposes the use of predictive technologies for performing resource provisioning tasks in modern distributed systems. As a foundation, methods stemming from research in the field of machine learning are used to improve target metrics like system performance or operational cost. In contrast to traditional, reactive approaches, the proposed methodology of predictive decision-making is able to perform operational tasks ahead of time, such as scaling out in advance for a predicted increase of demand. We show how to use predictive methods in various domains of distributed systems, namely cloud computing, business process management systems, data stream processing, and blockchains. We propose approaches to solving challenges in designing predictive methods, such as metric prediction, failure prediction, or data filtering and estimation. We evaluate the impact of the proposed methods on the system using various quantitative methods, including testbed evaluation and simulation, as well as formal and qualitative analysis. Our results show that employing predictive approaches in these domains of distributed systems significantly improves performance attributes such as response time or adherence to service level agreements.

elib-URL des Eintrags:https://elib.dlr.de/140243/
Dokumentart:Hochschulschrift (Dissertation)
Titel:Predictive Approaches for Resource Provisioning in Distributed Systems
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Borkowski, MichaelTU Wienhttps://orcid.org/0000-0003-3440-8592NICHT SPEZIFIZIERT
Datum:2020
Referierte Publikation:Ja
Open Access:Ja
Seitenanzahl:165
Status:veröffentlicht
Stichwörter:Distributed systems, predictive systems, prediction, scalability, elasticity, blockchain
Institution:TU Wien
Abteilung:Fakultät für Informatik
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugführung > Pilotenassistenz
Hinterlegt von: Borkowski, Michael
Hinterlegt am:12 Jan 2021 10:03
Letzte Änderung:12 Jan 2021 10:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.