elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Accessibility | Contact | Deutsch
Fontsize: [-] Text [+]

High Temperature Solid Oxide Cells for Power-to-X applications: Status, Materials, Challenges

Amaya-Dueñas, Diana Maria and Riegraf, Matthias and Lang, Michael and Riedel, Marc and Heddrich, Marc P. and Costa, Rémi and Friedrich, Kaspar Andreas (2020) High Temperature Solid Oxide Cells for Power-to-X applications: Status, Materials, Challenges. PRIME 2020, 2020-10-05 - 2020-10-09, Digitale Tagung.

[img] PDF - Only accessible within DLR
2MB

Abstract

In the context of the energy transition, all sectors have the need to achieve the CO2 reduction goals and to use renewable energy as basis of their activity. In particular, a corner stone is to radically transform the chemical industry by integrating highly efficient electrochemical processes based on renewable power. This is a possibility to decarbonize the synthesis of chemicals, which was one aspect of the Power-to-X concept. Due to the fast kinetic at high temperature (~ 800°C), Solid Oxide Cells (SOC) enable not only efficient conversion of steam into Hydrogen, but also simultaneous electrolysis of H2O and CO2 to produce in one step syngas (H2 + CO), which is one of the main feedstock for the production of valuable chemicals, e.g. via methanol. In this contribution we report on state-of-the-art electrolyte supported cells operated in H2O-CO2 co-electrolysis mode in a range of temperature between 770°C and 860°C with different steam/carbon ratios for syngas production. The electrochemical behavior of these cells is presented and discussed with regards of the specific thermodynamic of CO2 reduction. Additionally, the thermodynamic boundaries for carbon deposition are shown in order to identify safe operating regimes for cells and SOC stacks [1]. When operated at high conversion for long time, i.e. typically 1000 hours, it is shown that the fuel electrode is affected by significant irreversible morphological changes due to silicon species originating very likely from the feed water, highlighting the needs in purified stream in order to keep degradation rates sufficiently low to enable sufficient lifetime of the systems. Aiming at enhancing durability and flexibility in SOC operation, we report as well on the potential use of an alternative perovskite electrocatalyst La0.65Sr0.3Cr0.85Ni0.15O3-δ (LSCrN) as fuel electrode for reversible operation in which performance in fuel cell steam electrolysis and co-electrolysis operating modes are evaluated. [1] Amaya Dueñas D. M, Riedel M., Riegraf M., Costa R., Friedrich K. A. (2020) High Temperature Co-electrolysis for Power-to-X, Chemie Ingenieur Technik 2020, 92, No. 1–2, 45–52, doi:10.1002/cite.201900119

Item URL in elib:https://elib.dlr.de/140142/
Document Type:Conference or Workshop Item (Speech)
Title:High Temperature Solid Oxide Cells for Power-to-X applications: Status, Materials, Challenges
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Amaya-Dueñas, Diana MariaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Riegraf, MatthiasUNSPECIFIEDhttps://orcid.org/0000-0002-0383-2545UNSPECIFIED
Lang, MichaelUNSPECIFIEDhttps://orcid.org/0000-0001-7756-9658UNSPECIFIED
Riedel, MarcUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Heddrich, Marc P.UNSPECIFIEDhttps://orcid.org/0000-0002-7037-0870UNSPECIFIED
Costa, RémiUNSPECIFIEDhttps://orcid.org/0000-0002-3534-1935UNSPECIFIED
Friedrich, Kaspar AndreasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:9 October 2020
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:Power-to-X, Solid Oxid Cells, Electrode Materials
Event Title:PRIME 2020
Event Location:Digitale Tagung
Event Type:international Conference
Event Start Date:5 October 2020
Event End Date:9 October 2020
Organizer:The Electrochemical Society
HGF - Research field:Energy
HGF - Program:Storage and Cross-linked Infrastructures
HGF - Program Themes:Electrolysis and Hydrogen
DLR - Research area:Energy
DLR - Program:E SP - Energy Storage
DLR - Research theme (Project):E - Elektrochemical Processes (Electrolysis) (old)
Location: Stuttgart
Institutes and Institutions:Institute of Engineering Thermodynamics > Electrochemical Energy Technology
Deposited By: Friedrich, Prof.Dr. Kaspar Andreas
Deposited On:11 Jan 2021 16:49
Last Modified:24 Apr 2024 20:41

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
OpenAIRE Validator logo electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.