Amaya-Dueñas, Diana Maria und Riegraf, Matthias und Lang, Michael und Riedel, Marc und Heddrich, Marc P. und Costa, Rémi und Friedrich, Kaspar Andreas (2020) High Temperature Solid Oxide Cells for Power-to-X applications: Status, Materials, Challenges. PRIME 2020, 2020-10-05 - 2020-10-09, Digitale Tagung.
PDF
- Nur DLR-intern zugänglich
2MB |
Kurzfassung
In the context of the energy transition, all sectors have the need to achieve the CO2 reduction goals and to use renewable energy as basis of their activity. In particular, a corner stone is to radically transform the chemical industry by integrating highly efficient electrochemical processes based on renewable power. This is a possibility to decarbonize the synthesis of chemicals, which was one aspect of the Power-to-X concept. Due to the fast kinetic at high temperature (~ 800°C), Solid Oxide Cells (SOC) enable not only efficient conversion of steam into Hydrogen, but also simultaneous electrolysis of H2O and CO2 to produce in one step syngas (H2 + CO), which is one of the main feedstock for the production of valuable chemicals, e.g. via methanol. In this contribution we report on state-of-the-art electrolyte supported cells operated in H2O-CO2 co-electrolysis mode in a range of temperature between 770°C and 860°C with different steam/carbon ratios for syngas production. The electrochemical behavior of these cells is presented and discussed with regards of the specific thermodynamic of CO2 reduction. Additionally, the thermodynamic boundaries for carbon deposition are shown in order to identify safe operating regimes for cells and SOC stacks [1]. When operated at high conversion for long time, i.e. typically 1000 hours, it is shown that the fuel electrode is affected by significant irreversible morphological changes due to silicon species originating very likely from the feed water, highlighting the needs in purified stream in order to keep degradation rates sufficiently low to enable sufficient lifetime of the systems. Aiming at enhancing durability and flexibility in SOC operation, we report as well on the potential use of an alternative perovskite electrocatalyst La0.65Sr0.3Cr0.85Ni0.15O3-δ (LSCrN) as fuel electrode for reversible operation in which performance in fuel cell steam electrolysis and co-electrolysis operating modes are evaluated. [1] Amaya Dueñas D. M, Riedel M., Riegraf M., Costa R., Friedrich K. A. (2020) High Temperature Co-electrolysis for Power-to-X, Chemie Ingenieur Technik 2020, 92, No. 1–2, 45–52, doi:10.1002/cite.201900119
elib-URL des Eintrags: | https://elib.dlr.de/140142/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
Titel: | High Temperature Solid Oxide Cells for Power-to-X applications: Status, Materials, Challenges | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 9 Oktober 2020 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Power-to-X, Solid Oxid Cells, Electrode Materials | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | PRIME 2020 | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Digitale Tagung | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 5 Oktober 2020 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 9 Oktober 2020 | ||||||||||||||||||||||||||||||||
Veranstalter : | The Electrochemical Society | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||||||
HGF - Programm: | Speicher und vernetzte Infrastrukturen | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Elektrolyse und Wasserstoff | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SP - Energiespeicher | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Elektrochemische Prozesse (Elektrolyse) (alt) | ||||||||||||||||||||||||||||||||
Standort: | Stuttgart | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Technische Thermodynamik > Elektrochemische Energietechnik | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Friedrich, Prof.Dr. Kaspar Andreas | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 11 Jan 2021 16:49 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags