elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Aerodynamic Coefficients of Lift-Generating Space Transportation Systems: Modeling and Simulation

von Rüden, David (2020) Aerodynamic Coefficients of Lift-Generating Space Transportation Systems: Modeling and Simulation. Bachelor's.

Full text not available from this repository.

Abstract

The current rapid changes in the space transportation market, in part due to the partially reusable launcher provided by SpaceX, dictates a European answer to stay competitive. One possible option is the SpaceLiner, a winged, lift-generating launcher, currently in development at DLR Bremen. An important aspect of this development is the investigation of the aerodynamic characteristics. Especially interesting are the e�ects that �ap de�ections have on the pitching moment and subsequently the trimmed �ight position. Since conventional handbook methods are limited in their ability to take this into account, a CFD solution was investigated. The chosen CFD software was the open-source package OpenFOAM. Within this work a work�ow for generating aerodynamic coe�cients using OpenFOAM was developed. This included the pre-processing of the geometry to be investigated, the generation of a surface and computational mesh, the numerical setup of the solver and the application of the post-processing tools. The surface mesh was generated using the open-source tool Salome, which has implemented functions for the utility used for generating the computational mesh, cfMesh. The OpenFOAM native post-processing utility forceCoeff�s was used to both generate the aerodynamic coe�cients as well as observe convergence. To validate the methods used, results from the ENTRAIN study were reproduced. During this validation process, it was discovered that the coarseness of the mesh was altering the results. After re�ning the mesh, the data set was successfully reproduced. Both the Euler data set, as well as the data obtained using OpenFOAM showed higher drag values, then the RANS simulations. Finally the aerodynamic coeffi�cients for the SpaceLiner 8 booster stage were generated at an altitude of 5km, a Mach number of 0.5 and at an angle of attack between -4° and 10°. The resulting data was compared to the internally used tool CAC. Both lift and pitching moment could be determined with a satisfactory accuracy. However only the lift-induced drag could be calculated correctly, with the base drag being to high. Additionally to the aerodynamic coe�cients, CFD is able to the accurately calculate pressure distribution, which can be further of use in the structural analysis.

Item URL in elib:https://elib.dlr.de/140080/
Document Type:Thesis (Bachelor's)
Additional Information:PDF auf Anfrage bei RY-SRT erhältlich! Email an: martin.sippel@dlr.de
Title:Aerodynamic Coefficients of Lift-Generating Space Transportation Systems: Modeling and Simulation
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
von Rüden, DavidDLRUNSPECIFIED
Date:March 2020
Refereed publication:No
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Number of Pages:76
Status:Unpublished
Keywords:forceCoe�ffs, ENTRAIN, OpenFOAM, aerodynamic coeffi�cients, SpaceLiner, booster stage, Aerodynamic Coefficients
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space Transportation
DLR - Research area:Raumfahrt
DLR - Program:R RP - Space Transportation
DLR - Research theme (Project):R - Raumfahrzeugsysteme - Systemanalyse Raumtransport (old)
Location: Bremen
Institutes and Institutions:Institute of Space Systems > Space Launcher Systems Analysis
Deposited By: Vormschlag, Nele Marei
Deposited On:06 Jan 2021 12:35
Last Modified:06 Jan 2021 12:35

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.