elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Quantum Well Solar Cell Using Ultrathin Germanium Nanoabsorber

Meddeb, Hosni und Osterthun, Norbert und Götz, Maximilian und Sergeev, Oleg und Gehrke, Kai und Vehse, Martin und Agert, Carsten (2020) Quantum Well Solar Cell Using Ultrathin Germanium Nanoabsorber. IEEE Xplore-Digital library. 47th IEEE Photovoltaic Specialists Conference, 2020-06-15 - 2020-08-21, Virtual online. doi: 10.1109/PVSC45281.2020.9301016.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.pvsc-proceedings.org/?term=Fundamentals%20and%20New%20Concepts%20for%20Future%20Technologies#

Kurzfassung

Quantum-confining nanostructures are a key approach for efficient solar energy conversion in advanced designs of photovoltaic devices. In this study, we report the first demonstration of quantum confinement (QC) effects in single quantum well (QW) solar cells based on ultrathin hydrogenated amorphous germanium (a-Ge:H) nanoabsorber embedded in optical resonant nanocavity, using cost-effective, industrial-compatible and low-temperature production processes. Due to a drastic reduction of a-Ge:H QW thickness from 20 nm down below 2 nm, the quantum size effects are manifested, inducing a significant modulation of the energy bandgap from 0.98 eV up to 1.56 eV. In single QW a-Ge:H solar cell, due to QC effects, the band gap widening and the upward shift of conduction band edge reduce the band offset at the a-Ge:H /a-Si:H heterojunction, leading to considerable tuning of the photovoltaic characteristics, while maintaining a comparable power conversion level. The decrease in the photo generation current density (Jsc) due to the reduction of nanoabsorber thickness from 20 nm down below 2 nm is compensated by a major gain up to a factor of two in open-circuit voltage (Voc) exceeding 700 mV and a considerable enhancement of the fill factor (FF) from 45 to 65 %. Moreover, due to the reduction of nanoabsorber thickness, high transmittance above 65% through the n-i-p multilayers without back reflector is achieved. The successful demonstration of ultrathin a-Ge:H QW solar cells underlines the promising potential of bandgap engineering and multiple quantum confining nanostructures in our device technology with high relevance for semi-transparent power-generating systems, especially in window-integrated PV or in greenhouses, when combined with appropriate transparent conductive electrodes.

elib-URL des Eintrags:https://elib.dlr.de/139934/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Quantum Well Solar Cell Using Ultrathin Germanium Nanoabsorber
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Meddeb, Hosnihosni.meddeb (at) dlr.dehttps://orcid.org/0000-0001-8939-7910NICHT SPEZIFIZIERT
Osterthun, Norbertnorbert.osterthun (at) dlr.dehttps://orcid.org/0000-0003-2668-6605NICHT SPEZIFIZIERT
Götz, MaximilianMaximilian.Goetz (at) dlr.dehttps://orcid.org/0000-0002-6078-4359NICHT SPEZIFIZIERT
Sergeev, Olegoleg.sergeev (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gehrke, KaiKai.Gehrke (at) dlr.dehttps://orcid.org/0000-0002-0591-8289NICHT SPEZIFIZIERT
Vehse, Martinmartin.vehse (at) dlr.dehttps://orcid.org/0000-0003-0578-6121NICHT SPEZIFIZIERT
Agert, CarstenCarsten.Agert (at) dlr.dehttps://orcid.org/0000-0003-4733-5257NICHT SPEZIFIZIERT
Datum:Januar 2020
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1109/PVSC45281.2020.9301016
Verlag:IEEE Xplore-Digital library
Status:veröffentlicht
Stichwörter:ultrathin solar cell, semiconductor nanostructures, quantum well, quantum confinement, resonant absorbing nanocavity
Veranstaltungstitel:47th IEEE Photovoltaic Specialists Conference
Veranstaltungsort:Virtual online
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:15 Juni 2020
Veranstaltungsende:21 August 2020
Veranstalter :IEEE Committee
HGF - Forschungsbereich:Energie
HGF - Programm:TIG Technologie, Innovation und Gesellschaft
HGF - Programmthema:Erneuerbare Energie- und Materialressourcen für eine nachhaltige Zukunft
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemanalyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Energiesystemtechnik (alt)
Standort: Oldenburg
Institute & Einrichtungen:Institut für Vernetzte Energiesysteme > Stadt- und Gebäudetechnologien
Hinterlegt von: Meddeb Dite Hasanet, Hosni
Hinterlegt am:04 Jan 2021 15:20
Letzte Änderung:24 Apr 2024 20:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.