Hu, Di und Li, Xuhong und Mou, LiChao und Jin, Pu und Chen, Dong und Zhu, Xiao Xiang und Dou, Dejing (2020) Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition. In: 16th European Conference on Computer Vision, ECCV 2020, 12369, Seiten 68-84. Springer. ECCV 2020, 2020-08-23 - 2020-08-28, Glasgow, UK. doi: 10.1007/978-3-030-58586-0_5. ISBN 978-303058541-9. ISSN 0302-9743.
PDF
2MB |
Offizielle URL: https://link.springer.com/chapter/10.1007/978-3-030-58586-0_5
Kurzfassung
Aerial scene recognition is a fundamental task in remote sensing and has recently received increased interest. While the visual information from overhead images with powerful models and efficient algorithms yields considerable performance on scene recognition, it still suffers from the variation of ground objects, lighting conditions etc. Inspired by the multi-channel perception theory in cognition science, in this paper, for improving the performance on the aerial scene recognition, we explore a novel audiovisual aerial scene recognition task using both images and sounds as input. Based on an observation that some specific sound events are more likely to be heard at a given geographic location, we propose to exploit the knowledge from the sound events to improve the performance on the aerial scene recognition. For this purpose, we have constructed a new dataset named AuDio Visual Aerial sceNe reCognition datasEt (ADVANCE). With the help of this dataset, we evaluate three proposed approaches for transferring the sound event knowledge to the aerial scene recognition task in a multimodal learning framework, and show the benefit of exploiting the audio information for the aerial scene recognition. The source code is publicly available for reproducibility purposes.
elib-URL des Eintrags: | https://elib.dlr.de/139789/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
Titel: | Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | August 2020 | ||||||||||||||||||||||||||||||||
Erschienen in: | 16th European Conference on Computer Vision, ECCV 2020 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Band: | 12369 | ||||||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-030-58586-0_5 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 68-84 | ||||||||||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||||||||||
Name der Reihe: | Lecture Notes in Computer Science | ||||||||||||||||||||||||||||||||
ISSN: | 0302-9743 | ||||||||||||||||||||||||||||||||
ISBN: | 978-303058541-9 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Cross-task transfer, aerial scene classification, geotagged sound, multimodal learning, remote sensing | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | ECCV 2020 | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Glasgow, UK | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 23 August 2020 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 28 August 2020 | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 18 Dez 2020 13:13 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags